-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathfaces.py
executable file
·104 lines (85 loc) · 3.78 KB
/
faces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python
# Copyright 2015 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Draws squares around detected faces in the given image."""
import argparse
# [START vision_face_detection_tutorial_imports]
from google.cloud import vision
from PIL import Image, ImageDraw
# [END vision_face_detection_tutorial_imports]
# [START vision_face_detection_tutorial_send_request]
def detect_face(face_file, max_results=4):
"""Uses the Vision API to detect faces in the given file.
Args:
face_file: A file-like object containing an image with faces.
Returns:
An array of Face objects with information about the picture.
"""
# [START vision_face_detection_tutorial_client]
client = vision.ImageAnnotatorClient()
# [END vision_face_detection_tutorial_client]
content = face_file.read()
image = vision.Image(content=content)
return client.face_detection(
image=image, max_results=max_results).face_annotations
# [END vision_face_detection_tutorial_send_request]
# [START vision_face_detection_tutorial_process_response]
def highlight_faces(image, faces, output_filename):
"""Draws a polygon around the faces, then saves to output_filename.
Args:
image: a file containing the image with the faces.
faces: a list of faces found in the file. This should be in the format
returned by the Vision API.
output_filename: the name of the image file to be created, where the
faces have polygons drawn around them.
"""
im = Image.open(image)
draw = ImageDraw.Draw(im)
# Sepecify the font-family and the font-size
for face in faces:
box = [(vertex.x, vertex.y)
for vertex in face.bounding_poly.vertices]
draw.line(box + [box[0]], width=5, fill='#00ff00')
# Place the confidence value/score of the detected faces above the
# detection box in the output image
draw.text(((face.bounding_poly.vertices)[0].x,
(face.bounding_poly.vertices)[0].y - 30),
str(format(face.detection_confidence, '.3f')) + '%',
fill='#FF0000')
im.save(output_filename)
# [END vision_face_detection_tutorial_process_response]
# [START vision_face_detection_tutorial_run_application]
def main(input_filename, output_filename, max_results):
with open(input_filename, 'rb') as image:
faces = detect_face(image, max_results)
print('Found {} face{}'.format(
len(faces), '' if len(faces) == 1 else 's'))
print('Writing to file {}'.format(output_filename))
# Reset the file pointer, so we can read the file again
image.seek(0)
highlight_faces(image, faces, output_filename)
# [END vision_face_detection_tutorial_run_application]
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Detects faces in the given image.')
parser.add_argument(
'input_image', help='the image you\'d like to detect faces in.')
parser.add_argument(
'--out', dest='output', default='out.jpg',
help='the name of the output file.')
parser.add_argument(
'--max-results', dest='max_results', default=4,
help='the max results of face detection.')
args = parser.parse_args()
main(args.input_image, args.output, args.max_results)