-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmetrics.py
executable file
·104 lines (86 loc) · 3.72 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import torch
import torchvision.transforms.functional as tf
import json
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from lib.config import cfg
from lib.utils.loss_utils import ssim, psnr
from lib.utils.lpipsPyTorch import lpips
from lib.datasets.dataset import Dataset
def evaluate(split='test'):
scene_dir = cfg.model_path
dataset = Dataset()
if split == 'test':
test_dir = Path(scene_dir) / "test"
cam_infos = dataset.test_cameras[1]
else:
test_dir = Path(scene_dir) / "train"
cam_infos = dataset.train_cameras[1]
cam_infos = list(sorted(cam_infos, key=lambda x: x.id))
full_dict = {}
per_view_dict = {}
full_dict_polytopeonly = {}
per_view_dict_polytopeonly = {}
print(f"Scene: {scene_dir }")
full_dict[scene_dir] = {}
per_view_dict[scene_dir] = {}
full_dict_polytopeonly[scene_dir] = {}
per_view_dict_polytopeonly[scene_dir] = {}
for method in os.listdir(test_dir):
print("Method:", method)
full_dict[scene_dir][method] = {}
per_view_dict[scene_dir][method] = {}
full_dict_polytopeonly[scene_dir][method] = {}
per_view_dict_polytopeonly[scene_dir][method] = {}
renders = []
gts = []
image_names = []
for cam_info in tqdm(cam_infos, desc="Reading image progress"):
image_name = cam_info.image_name
render_path = test_dir / method / f'{image_name}_rgb.png'
gt_path = test_dir / method / f'{image_name}_gt.png'
render = Image.open(render_path)
gt = Image.open(gt_path)
renders.append(tf.to_tensor(render)[:3, :, :])
gts.append(tf.to_tensor(gt)[:3, :, :])
image_names.append(image_name)
psnrs = []
ssims = []
lpipss = []
for idx in tqdm(range(len(renders)), desc="Metric evaluation progress"):
render = renders[idx].cuda()
gt = gts[idx].cuda()
ssims.append(ssim(render, gt))
psnrs.append(psnr(render, gt))
lpipss.append(lpips(render, gt, net_type='alex'))
print(" SSIM : {:>12.7f}".format(torch.tensor(ssims).mean(), ".5"))
print(" PSNR : {:>12.7f}".format(torch.tensor(psnrs).mean(), ".5"))
print(" LPIPS: {:>12.7f}".format(torch.tensor(lpipss).mean(), ".5"))
print("")
full_dict[scene_dir][method].update({"SSIM": torch.tensor(ssims).mean().item(),
"PSNR": torch.tensor(psnrs).mean().item(),
"LPIPS": torch.tensor(lpipss).mean().item()})
per_view_dict[scene_dir][method].update({"SSIM": {name: ssim for ssim, name in zip(torch.tensor(ssims).tolist(), image_names)},
"PSNR": {name: psnr for psnr, name in zip(torch.tensor(psnrs).tolist(), image_names)},
"LPIPS": {name: lp for lp, name in zip(torch.tensor(lpipss).tolist(), image_names)}})
with open(scene_dir + f"/results_{split}.json", 'w') as fp:
json.dump(full_dict[scene_dir], fp, indent=True)
with open(scene_dir + f"/per_view_{split}.json", 'w') as fp:
json.dump(per_view_dict[scene_dir], fp, indent=True)
if __name__ == "__main__":
if cfg.eval.eval_train:
evaluate(split='train')
if cfg.eval.eval_test:
evaluate(split='test')