diff --git a/pygmt/tests/test_clib_to_numpy.py b/pygmt/tests/test_clib_to_numpy.py index 397b79b3164..50d9bc18a0d 100644 --- a/pygmt/tests/test_clib_to_numpy.py +++ b/pygmt/tests/test_clib_to_numpy.py @@ -92,7 +92,27 @@ def test_to_numpy_ndarray_numpy_dtypes_numeric(dtype, supported): # 2. pandas dtypes # 3. PyArrow dtypes # -# Reference: https://pandas.pydata.org/docs/reference/arrays.html +# pandas provides following dtypes: +# +# - Numeric dtypes: +# - Int8, Int16, Int32, Int64 +# - UInt8, UInt16, UInt32, UInt64 +# - Float32, Float64 +# - DatetimeTZDtype +# - PeriodDtype +# - IntervalDtype +# - StringDtype +# - CategoricalDtype +# - SparseDtype +# - BooleanDtype +# - ArrowDtype +# +# ArrowDtype is a special dtype that is used to store data in the PyArrow format. +# +# References: +# 1. https://pandas.pydata.org/docs/reference/arrays.html +# 2. https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes +# 3. https://pandas.pydata.org/docs/user_guide/pyarrow.html ######################################################################################## @pytest.mark.parametrize( ("dtype", "supported"),