-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDESCRIPTION
178 lines (178 loc) · 4.76 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
Type: Package
Package: psborrow2
Title: Bayesian Dynamic Borrowing Analysis and Simulation
Version: 0.0.3.4
Authors@R: c(
person(
given = "Matt",
family = "Secrest",
role = c("aut", "cre"),
comment = c(ORCID = "0000-0002-0939-4902"),
email = "secrestm@gene.com"
),
person(
given = "Isaac",
family = "Gravestock",
role = c("aut"),
email = "isaac.gravestock@roche.com"
),
person(
given = "Craig",
family = "Gower-Page",
role = c("ctb"),
email = "craig.gower-page@roche.com"
),
person(
given = "Manoj",
family = "Khanal",
role = c("ctb"),
email = "khanal_manoj@lilly.com"
),
person(
given = "Mingyang",
family = "Shan",
role = c("ctb"),
email = "mingyang.shan@lilly.com"
),
person(
given = "Kexin",
family = "Jin",
role = c("ctb"),
email = "kexin.jin@bms.com"
),
person(
given = "Zhi",
family = "Yang",
role = c("ctb"),
email = "zhi.yang@bms.com"
),
person("Genentech, Inc.", role = c("cph", "fnd"))
)
Description: Bayesian dynamic borrowing is an approach to incorporating external
data to supplement a randomized, controlled trial analysis in which
external data are incorporated in a dynamic way (e.g., based on similarity
of outcomes); see Viele 2013 <doi:10.1002/pst.1589> for an overview.
This package implements the hierarchical commensurate prior approach to dynamic borrowing
as described in Hobbes 2011 <doi:10.1111/j.1541-0420.2011.01564.x>.
There are three main functionalities. First, 'psborrow2' provides a user-friendly
interface for applying dynamic borrowing on the study results handles the Markov Chain
Monte Carlo sampling on behalf of the user. Second, 'psborrow2' provides a
simulation framework to compare different borrowing parameters (e.g. full borrowing, no
borrowing, dynamic borrowing) and other trial and borrowing characteristics
(e.g. sample size, covariates) in a unified way. Third, 'psborrow2' provides
a set of functions to generate data for simulation studies, and also allows
the user to specify their own data generation process. This package is designed to
use the sampling functions from 'cmdstanr' which can be installed from
<https://stan-dev.r-universe.dev>.
URL: https://github.com/Genentech/psborrow2, https://genentech.github.io/psborrow2/index.html
BugReports: https://github.com/Genentech/psborrow2/issues
License: Apache License 2.0
Encoding: UTF-8
Depends:
R (>= 4.1.0)
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.1
Config/testthat/edition: 3
Imports:
checkmate,
glue,
methods,
graphics,
posterior,
generics,
Matrix,
mvtnorm,
future,
simsurv
Suggests:
cmdstanr,
survival,
flexsurv,
eha,
testthat (>= 3.0),
usethis (>= 2.1.5),
vdiffr,
tibble,
xml2,
knitr,
rmarkdown,
bayesplot,
matrixcalc,
WeightIt,
MatchIt,
BayesPPD,
ggsurvfit,
gbm,
ggplot2,
cobalt,
table1,
gt,
gtsummary
Additional_repositories: https://stan-dev.r-universe.dev
Language: en-US
SystemRequirements: cmdstan
Collate:
'generics.R'
'prior_class.R'
'covariate_class.R'
'add_covariates.R'
'prior_normal.R'
'treatment_class.R'
'borrowing_class.R'
'outcome_class.R'
'analysis_class.R'
'borrowing_details.R'
'borrowing_full.R'
'borrowing_hierarchical_commensurate.R'
'borrowing_none.R'
'cast_mat_to_long_pem.R'
'check_data_matrix_has_columns.R'
'cmdstan.R'
'create_analysis_obj.R'
'create_data_matrix.R'
'treatment_details.R'
'sim_treatment_list.R'
'helpers.R'
'outcome_bin_logistic.R'
'prior_exponential.R'
'outcome_surv_weibull_ph.R'
'outcome_surv_exponential.R'
'sim_outcome_list.R'
'sim_borrowing_list.R'
'sim_covariate_list.R'
'sim_data_list.R'
'simulation_class.R'
'create_simulation_obj.R'
'data.R'
'get_prior_string_covariates.R'
'prior_half_cauchy.R'
'outcome_cont_normal.R'
'outcome_surv_pem.R'
'load_and_interpolate_stan_model.R'
'load_stan_file.R'
'make_analysis_object_list.R'
'mcmc_sample.R'
'mcmc_simulation_result.R'
'package.R'
'prepare_stan_data_inputs.R'
'prior_bernoulli.R'
'prior_beta.R'
'prior_cauchy.R'
'prior_gamma.R'
'prior_half_normal.R'
'prior_poisson.R'
'sim_covariates.R'
'sim_estimate_bias.R'
'sim_estimate_effect_variance.R'
'sim_estimate_mse.R'
'sim_is_null_effect_covered.R'
'sim_is_true_effect_covered.R'
'sim_samplesize.R'
'simulate_data_baseline.R'
'simulate_data.R'
'simvar_class.R'
'trim_data_matrix.R'
'uniform_prior.R'
'zzz.R'
LazyData: true
VignetteBuilder: knitr