-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenen.py
285 lines (229 loc) · 10.1 KB
/
openen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#!/usr/bin/env python
import os
import sys
import time
import argparse
import itertools
import subprocess
import pandas as pd
import multiprocessing
import threading
from itertools import cycle, islice
from functools import partial
from threading import Semaphore
from datetime import datetime
from multiprocessing import Pool
from subprocess import run, PIPE
def valid_file(param):
base, ext = os.path.splitext(param)
if ext.lower() not in ('.csv', '.fasta', '.fa', '.fas', '.fna'):
raise argparse.ArgumentTypeError('File must have a fasta or csv extension')
return param
def check_arg(args=None):
parser = argparse.ArgumentParser(description='RNAplfold wrapper using multiprocesses')
parser.add_argument('-s', '--sequence',
type=valid_file,
metavar='STR',
help='Sequences in fasta or csv format',
required='True')
parser.add_argument('-U', '--utr',
metavar='STR/INT',
help='Use an integer if 5UTR presence, e.g., -U 1. Use your own 5UTR sequence if your plasmid backbone is not of pET vector. Default = GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACAT')
parser.add_argument('-x', '--execute',
help='Run RNAplfold multiprocessing',
action="store_true")
parser.add_argument('-W', '--winsize',
default='210',
metavar='INT',
help='Average the pair probabilities over windows of given size. An RNAplfold option. Default = 210')
parser.add_argument('-u', '--ulength',
default='210',
metavar='INT',
help='Compute the mean probability that subsegments of length 1 to a given length are unpaired. An RNAplfold option. Default = 210')
parser.add_argument('-S', '--stack',
help='Stack _openen dataframes to single-column dataframes, concatenate them as a single pandas dataframe and output it as a .pkl pickle file. Requires i and j options',
action="store_true")
parser.add_argument('-n', '--utrlength',
type=int,
metavar='INT',
default=71,
help='The length of 5UTR. Related to option -S and -e. Default = 71')
parser.add_argument('-t', '--distance',
type=int,
default=100,
metavar='INT',
help='Downstream distance to start codon to include when stacking. Related to option -S. Default = 100')
parser.add_argument('-e', '--parse',
help='Parsing _openen dataframes to get opening energy of unpaired subsegments. Requires i and l options',
action="store_true")
parser.add_argument('-i', '--ipos',
type=int,
default=18,
metavar='INT',
help='Position i centered at start codon of an input sequence. Related to option -e. Default = 18')
parser.add_argument('-l', '--length',
type=int,
default=48,
metavar='INT',
help='Subsegment l as in _openen file. Related to option -e. Default = 48')
parser.add_argument('-r', '--remove',
help='Remove _openen and .ps files',
action="store_true")
parser.add_argument('-o', '--output',
metavar='STR',
default='openen',
help='Output file name for .pkl. Related to -S. Default = openen')
parser.add_argument('-p', '--processes',
type=int,
metavar='INT',
help='Number of processes to spawn. Default = half of the number of CPU')
results = parser.parse_args(args)
return (results.sequence, results.utr, \
results.execute, results.winsize, results.ulength, \
results.stack, results.utrlength, results.distance, \
results.parse, results.ipos, results.length, \
results.remove, results.output, results.processes)
screen_lock = Semaphore(value=1)
_stop_timer = threading.Event() #global var for thread
def time_count():
starttime = datetime.now()
while not _stop_timer.isSet():
screen_lock.acquire()
time_message = '\r' + str(datetime.now() - starttime)[:-7]
sys.stdout.write(time_message)
sys.stdout.flush()
screen_lock.release()
time.sleep(0.01)
def print_time():
timerthread = threading.Thread(target = time_count, args = ())
timerthread.start()
def progress(iteration, total):
bars_string = int(float(iteration) / float(total) * 50.)
sys.stdout.write(
"\r|%-50s| %d%% (%s/%s)" % (
'█'*bars_string+ "░" * (50 - bars_string), float(iteration) / float(total) * 100,
iteration,
total
)
)
sys.stdout.flush()
if iteration == total:
print(' Completed!')
def fasta_to_dataframe(f):
fasta_df = pd.read_csv(f,sep='>', lineterminator='>',header=None)
fasta_df[['Accession','Sequence']]=fasta_df[0].str.split('\n', 1, expand=True)
fasta_df['Accession'] = '>' + fasta_df['Accession']
fasta_df['Sequence'] = fasta_df['Sequence'].replace('\n','', regex=True)
fasta_df.drop(0, axis=1, inplace=True)
fasta_df.set_index('Accession',inplace=True)
fasta_df = fasta_df[fasta_df.Sequence != '']
final_df = fasta_df.dropna()
return final_df
def openen(W, u, seq):
w_par = '-W ' + str(W)
u_par = '-u ' + str(u)
run(['RNAplfold', w_par, u_par, '-O'], input=str.encode(seq))
def parse_openen(l, n, i, f):
d = pd.read_csv(f, sep='\t', skiprows=2, header=None)[l][n+i-1]
return f.replace('_openen',''), d
def stack_openen(n, t, f):
seqname = f.replace('_openen', '').split()
seqname = pd.DataFrame(seqname)
seqname.columns = ['id']
d = pd.read_csv(f, sep='\t', skiprows=2, nrows=(n+t), header=None) #read in 5UTR length + t lines
d = d.set_index(0).stack().to_frame()
d = d[0].apply(lambda x: round(x, 4)).to_list()
d = pd.DataFrame(d).T
d = pd.concat([seqname,d], axis=1)
return d
def main():
base,ext = os.path.splitext(s)
if ext.lower() in ('.fasta', '.fa', '.fas', '.fna'):
seq = fasta_to_dataframe(s).reset_index()
else:
seq = pd.read_csv(s, skiprows=1, header=None)
startTime = datetime.now()
label = (z for z in cycle(list(range(0,p))))
label = pd.DataFrame({'label': list(islice(label, len(seq)))})
df = pd.concat([label, seq], axis=1)
_openen = (df['Accession'].str.replace('>', '') + '_openen').tolist()
if x is True:
print('\nRunning RNAplfold using', p, 'processes...')
print_time()
if U is None:
utr = 'GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACAT'
df['fasta'] = df['Accession'] + '\n' + utr + seq['Sequence'] + '\n'
fasta = df.groupby('label')['fasta'].apply(''.join).tolist()
else:
try:
int(U)
df['fasta'] = df['Accession'] + '\n' + seq['Sequence'] + '\n'
fasta = df.groupby('label')['fasta'].apply(''.join).tolist()
except ValueError:
df['fasta'] = df['Accession'] + '\n' + U + seq['Sequence'] + '\n'
fasta = df.groupby('label')['fasta'].apply(''.join).tolist()
groups = len(fasta)
p1 = Pool(p)
results = []
progress(0, groups)
openen_func = partial(openen, W, u)
for a in p1.imap_unordered(openen_func, fasta):
results.append(a)
progress(len(results), groups)
_stop_timer.set()
p1.close()
p1.join()
else:
print('\nSkipped RNAplfold (no option -x given!)', flush = True)
if S is True:
print('\nStacking _openen files and merging')
print_time()
d = pd.DataFrame()
progress(0, len(_openen))
for b in _openen:
d = pd.concat([d, stack_openen(n, t, b)], sort=True)
progress(len(d), len(_openen))
_stop_timer.set()
filename = o + '.pkl'
d.to_pickle(filename)
else:
print('\nSkipped stacking (no option -S given!)', flush = True)
if e is True:
print('\nParsing _openen files using', p, 'processes...')
parse_func = partial(parse_openen, l, n, i)
p2 = Pool(p)
plfold = p2.imap_unordered(parse_func, _openen)
p2.close()
p2.join()
results = list(plfold)
d = pd.DataFrame(results)
d.columns = ['Accession', 'openen']
filename = o + '.out'
d.to_csv(filename, sep='\t', index=False, encoding='utf-8')
else:
print('\nSkipped parsing (no option -e given!)', flush = True)
if r is True:
print('\nRemoving temporary files...')
ps = (df['Accession'].str.replace('>', '') + '_dp.ps').tolist()
p4 = Pool(p)
p4.imap_unordered(os.remove, _openen)
p4.imap_unordered(os.remove, ps)
p4.close()
p4.join()
else:
print('\n_openen and .ps available (no option -r given!)', flush = True)
print('\nTime taken', datetime.now() - startTime, flush = True)
if __name__ == "__main__":
s, U, x, W, u, S, n, t, e, i, l, r, o, p = check_arg(sys.argv[1:])
if U is None:
utr = 'GGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACAT'
print('\n5UTR is', utr, flush = True)
else:
try:
int(U)
print('\n5UTR presence', flush = True)
except ValueError:
print('\n5UTR is', U, flush = True)
if p is None:
p = 4
main()