-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
147 lines (122 loc) · 4.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import torch
from torch import optim
from torch.utils.data import DataLoader
from utils.solvers import PolyLR
from utils.loss import HDRLoss
from utils.HDRutils import tonemap
from utils.dataprocessor import dump_sample
from dataset.HDR import KalantariDataset, KalantariTestDataset
from models.NHDRRNet import NHDRRNet
from utils.configs import Configs
import random
import numpy as np
def setup_seed(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# Get configurations
configs = Configs()
# Load Data & build dataset
train_dataset = KalantariDataset(configs=configs)
train_dataloader = DataLoader(train_dataset, batch_size=configs.batch_size, shuffle=True)
test_dataset = KalantariTestDataset(configs=configs)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=True)
# Build NHDRRNet model from configs
model = NHDRRNet()
if configs.multigpu is False:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
else:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device == torch.device('cpu'):
raise EnvironmentError('No GPUs, cannot initialize multigpu training.')
model.to(device)
# Define optimizer
optimizer = optim.Adam(model.parameters(), betas=(configs.beta1, configs.beta2), lr=configs.learning_rate)
# Define Criterion
criterion = HDRLoss()
# Define Scheduler
lr_scheduler = PolyLR(optimizer, max_iter=configs.epoch, power=0.9)
# Read checkpoints
start_epoch = 0
checkpoint_file = configs.checkpoint_dir + '/checkpoint.tar'
if os.path.isfile(checkpoint_file):
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
lr_scheduler.load_state_dict(checkpoint['scheduler'])
print("Load checkpoint %s (epoch %d)", checkpoint_file, start_epoch)
if configs.multigpu is True:
model = torch.nn.DataParallel(model)
def train_one_epoch():
model.train()
for idx, data in enumerate(train_dataloader):
in_LDRs, ref_LDRs, in_HDRs, ref_HDRs, in_exps, ref_exps = data
in_LDRs = in_LDRs.to(device)
in_HDRs = in_HDRs.to(device)
ref_HDRs = ref_HDRs.to(device)
# Forward
result = model(in_LDRs, in_HDRs)
# Backward
loss = criterion(tonemap(result), tonemap(ref_HDRs))
loss.backward()
optimizer.step()
optimizer.zero_grad()
print('--------------- Train Batch %d ---------------' % (idx + 1))
print('loss: %.12f' % loss.item())
def eval_one_epoch():
model.eval()
mean_loss = 0
count = 0
for idx, data in enumerate(test_dataloader):
sample_path, in_LDRs, in_HDRs, in_exps, ref_HDRs = data
sample_path = sample_path[0]
in_LDRs = in_LDRs.to(device)
in_HDRs = in_HDRs.to(device)
ref_HDRs = ref_HDRs.to(device)
# Forward
with torch.no_grad():
res = model(in_LDRs, in_HDRs)
# Compute loss
with torch.no_grad():
loss = criterion(tonemap(res), tonemap(ref_HDRs))
dump_sample(sample_path, res.cpu().detach().numpy())
print('--------------- Eval Batch %d ---------------' % (idx + 1))
print('loss: %.12f' % loss.item())
mean_loss += loss.item()
count += 1
mean_loss = mean_loss / count
return mean_loss
def train(start_epoch):
global cur_epoch
for epoch in range(start_epoch, configs.epoch):
cur_epoch = epoch
print('**************** Epoch %d ****************' % (epoch + 1))
print('learning rate: %f' % (lr_scheduler.get_last_lr()[0]))
train_one_epoch()
loss = eval_one_epoch()
lr_scheduler.step()
if configs.multigpu is False:
save_dict = {'epoch': epoch + 1, 'loss': loss,
'optimizer_state_dict': optimizer.state_dict(),
'model_state_dict': model.state_dict(),
'scheduler': lr_scheduler.state_dict()
}
else:
save_dict = {'epoch': epoch + 1, 'loss': loss,
'optimizer_state_dict': optimizer.state_dict(),
'model_state_dict': model.module.state_dict(),
'scheduler': lr_scheduler.state_dict()
}
torch.save(save_dict, os.path.join(configs.checkpoint_dir, 'checkpoint.tar'))
torch.save(save_dict, os.path.join(configs.checkpoint_dir, 'checkpoint' + str(epoch) + '.tar'))
print('mean eval loss: %.12f' % loss)
if __name__ == '__main__':
train(start_epoch)