-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
87 lines (69 loc) · 2.49 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import torch
from torch import optim
from torch.utils.data import DataLoader
from utils.loss import HDRLoss
from utils.HDRutils import tonemap
from utils.dataprocessor import dump_sample
from dataset.HDR import KalantariTestDataset
from models.NHDRRNet import NHDRRNet
from utils.configs import Configs
# Get configurations
configs = Configs()
# Load dataset
test_dataset = KalantariTestDataset(configs=configs)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=True)
# Build NHDRRNet model from configs
model = NHDRRNet()
if configs.multigpu is False:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
else:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device == torch.device('cpu'):
raise EnvironmentError('No GPUs, cannot initialize multigpu training.')
model.to(device)
# Define optimizer
optimizer = optim.Adam(model.parameters(), betas=(configs.beta1, configs.beta2), lr=configs.learning_rate)
# Define Criterion
criterion = HDRLoss()
# Read checkpoints
checkpoint_file = configs.checkpoint_dir + '/checkpoint.tar'
if os.path.isfile(checkpoint_file):
checkpoint = torch.load(checkpoint_file)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
print("Load checkpoint %s (epoch %d)", checkpoint_file, start_epoch)
else:
raise ModuleNotFoundError('No checkpoint files.')
if configs.multigpu is True:
model = torch.nn.DataParallel(model)
def test_one_epoch():
model.eval()
mean_loss = 0
count = 0
for idx, data in enumerate(test_dataloader):
sample_path, in_LDRs, in_HDRs, in_exps, ref_HDRs = data
sample_path = sample_path[0]
in_LDRs = in_LDRs.to(device)
in_HDRs = in_HDRs.to(device)
ref_HDRs = ref_HDRs.to(device)
# Forward
with torch.no_grad():
res = model(in_LDRs, in_HDRs)
# Compute loss
with torch.no_grad():
loss = criterion(tonemap(res), tonemap(ref_HDRs))
dump_sample(sample_path, res.cpu().detach().numpy())
print('--------------- Test Batch %d ---------------' % (idx + 1))
print('loss: %.12f' % loss.item())
mean_loss += loss.item()
count += 1
mean_loss = mean_loss / count
return mean_loss
def test():
loss = test_one_epoch()
print('mean test loss: %.12f' % loss)
if __name__ == '__main__':
test()