-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtask_06.py
144 lines (110 loc) · 3.48 KB
/
task_06.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
def plot_state(t,actual, estimated=None):
'''
plot position, speed, and acceleration in the x and y coordinates for
the actual data, and optionally for the estimated data
'''
trajectories = [actual]
if estimated is not None:
trajectories.append(estimated)
fig, ax = plt.subplots(3, 2, sharex='col', sharey='row', figsize=(8,8))
for x, w in trajectories:
ax[0,0].plot(t,x[0,:-1])
ax[0,1].plot(t,x[1,:-1])
ax[1,0].plot(t,x[2,:-1])
ax[1,1].plot(t,x[3,:-1])
ax[2,0].plot(t,w[0,:])
ax[2,1].plot(t,w[1,:])
ax[0,0].set_ylabel('x position')
ax[1,0].set_ylabel('x velocity')
ax[2,0].set_ylabel('x input')
ax[0,1].set_ylabel('y position')
ax[1,1].set_ylabel('y velocity')
ax[2,1].set_ylabel('y input')
ax[0,1].yaxis.tick_right()
ax[1,1].yaxis.tick_right()
ax[2,1].yaxis.tick_right()
ax[0,1].yaxis.set_label_position("right")
ax[1,1].yaxis.set_label_position("right")
ax[2,1].yaxis.set_label_position("right")
ax[2,0].set_xlabel('time')
ax[2,1].set_xlabel('time')
def plot_positions(traj, labels, axis=None,filename=None):
'''
show point clouds for true, observed, and recovered positions
'''
matplotlib.rcParams.update({'font.size': 14})
n = len(traj)
fig, ax = plt.subplots(1, n, sharex=True, sharey=True,figsize=(12, 5))
if n == 1:
ax = [ax]
for i,x in enumerate(traj):
ax[i].plot(x[0,:], x[1,:], 'ro', alpha=.1)
ax[i].set_title(labels[i])
if axis:
ax[i].axis(axis)
if filename:
fig.savefig(filename, bbox_inches='tight')
n = 1000 # number of timesteps
T = 50 # time will vary from 0 to T with step delt
ts, delt = np.linspace(0,T,n,endpoint=True, retstep=True)
gamma = .05 # damping, 0 is no damping
A = np.zeros((4,4))
B = np.zeros((4,2))
H = np.zeros((2,4))
A[0,0] = 1
A[1,1] = 1
A[0,2] = (1-gamma*delt/2)*delt
A[1,3] = (1-gamma*delt/2)*delt
A[2,2] = 1 - gamma*delt
A[3,3] = 1 - gamma*delt
B[0,0] = delt**2/2
B[1,1] = delt**2/2
B[2,0] = delt
B[3,1] = delt
H[0,0] = 1
H[1,1] = 1
sigma = 20
p = .20
np.random.seed(6)
x = np.zeros((4,n+1))
x[:,0] = [0,0,0,0]
y = np.zeros((2,n))
# generate random input and noise vectors
w = np.random.randn(2,n)
eta = np.random.randn(2,n)
# add outliers to v
np.random.seed(0)
inds = np.random.rand(n) <= p
eta[:,inds] = sigma*np.random.randn(2,n)[:,inds]
# simulate the system forward in time
for t in range(n):
y[:,t] = H.dot(x[:,t]) + eta[:,t]
x[:,t+1] = A.dot(x[:,t]) + B.dot(w[:,t])
x_true = x.copy()
w_true = w.copy()
plot_state(ts,(x_true,w_true))
plot_positions([x_true,y], ['True', 'Observed'],[-4,14,-5,20],'rkf1.pdf')
import cvxpy as cp
x = cp.Variable(shape=(4, n+1))
w = cp.Variable(shape=(2, n))
eta = cp.Variable(shape=(2, n))
tau = 2
rho = 2
obj = cp.sum_squares(w)
obj += cp.sum([tau*cp.huber(cp.norm(eta[:,t]),rho) for t in range(n)])
obj = cp.Minimize(obj)
constr = []
for t in range(n):
constr += [ x[:,t+1] == A@x[:,t] + B@w[:,t] ,
y[:,t] == H@x[:,t] + eta[:,t] ]
cp.Problem(obj, constr).solve(verbose=True)
x = np.array(x.value)
w = np.array(w.value)
plot_state(ts,(x_true,w_true),(x,w))
plot_positions([x_true,y], ['True', 'Noisy'], [-4,14,-5,20])
plot_positions([x_true,x], ['True', 'Robust KF recovery'], [-4,14,-5,20],'rkf3.pdf')
print("optimal objective value: {}".format(obj.value))
plt.show()