forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_model_builders.py
82 lines (69 loc) · 2.4 KB
/
_model_builders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import List
from torchtune.models.gemma._component_builders import gemma, lora_gemma
from torchtune.models.gemma.transformer import GemmaTransformerDecoder
from torchtune.modules.tokenizers import SentencePieceTokenizer
from torchtune.modules.peft import LORA_ATTN_MODULES
from functools import partial
"""
Model builders build specific instantiations using component builders. For example
the ``gemma_2b`` model builder uses the ``gemma`` component builder.
"""
def gemma_2b() -> GemmaTransformerDecoder:
"""
Builder for creating a Gemma 2B model initialized w/ the default 2b parameter values
from: https://blog.google/technology/developers/gemma-open-models/
Returns:
GemmaTransformerDecoder: Instantiation of Gemma 2B model
"""
return gemma(
vocab_size=256_000,
num_layers=18,
num_heads=8,
head_dim=256,
num_kv_heads=1,
embed_dim=2048,
intermediate_dim=16384,
max_seq_len=8192,
attn_dropout=0.0,
norm_eps=1e-6,
)
def gemma_tokenizer(path: str) -> SentencePieceTokenizer:
tokenizer = SentencePieceTokenizer(path)
tokenizer.pad_id = 0
return tokenizer
def lora_gemma_2b(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
quantize_base: bool = False,
) -> GemmaTransformerDecoder:
return lora_gemma(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
vocab_size=256_000,
num_layers=18,
num_heads=8,
head_dim=256,
num_kv_heads=1,
embed_dim=2048,
intermediate_dim=16384,
max_seq_len=8192,
attn_dropout=0.0,
norm_eps=1e-6,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=0.05,
quantize_base=quantize_base,
)
qlora_gemma_2b = partial(lora_gemma_2b, quantize_base=True)
qlora_gemma_2b.__doc__ = """
Builder for creating a Gemma model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_gemma_2b` for full API arguments.
"""