-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
executable file
·1008 lines (755 loc) · 41 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from collections import OrderedDict
from copy import deepcopy
import sys
from sys import stderr
import time
from pathlib import Path
import gc
from functools import reduce
import operator as op
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.data import Dataset, DataLoader, TensorDataset
def grad_gauss(x, m, var):
xout = (x - m) / var
return -xout
def ornstein_ulhenbeck(x, gradx, gamma):
xout = x + gamma * gradx + \
torch.sqrt(2 * gamma) * torch.randn(x.shape, device=x.device)
return xout
def get_timestep_embedding(timesteps, embedding_dim=128):
"""
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
https://github.com/pytorch/fairseq/blob/master/fairseq/modules/sinusoidal_positional_embedding.py
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float, device=timesteps.device) * -emb)
emb = timesteps.float() * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
if embedding_dim % 2 == 1: # zero pad
emb = F.pad(emb, [0,1])
return emb
def load_data(file_path_gflash, file_path_g4, normalize_energy=True, shuffle=True, plotting=False):
energy_voxel_g4 = np.load(file_path_g4)[:, 0:100].astype(np.float32)
energy_voxel_gflash = np.load(file_path_gflash)[:, 0:100].astype(np.float32)
energy_particle_g4 = np.load(file_path_g4)[:, 200:201].astype(np.float32)/10000.0
energy_particle_gflash = np.load(file_path_gflash)[:, 200:201].astype(np.float32)/10000.0
if shuffle:
# sort by incident energy to define pairs
mask_energy_particle_g4 = np.argsort(energy_particle_g4, axis=0)[:,0]
mask_energy_particle_gflash = np.argsort(energy_particle_gflash, axis=0)[:,0]
energy_particle_g4 = energy_particle_g4[mask_energy_particle_g4]
energy_particle_gflash = energy_particle_gflash[mask_energy_particle_gflash]
energy_voxel_g4 = energy_voxel_g4[mask_energy_particle_g4]
energy_voxel_gflash = energy_voxel_gflash[mask_energy_particle_gflash]
# reshuffle consistently
mask_shuffle = np.random.permutation(energy_particle_g4.shape[0])
energy_particle_g4 = energy_particle_g4[mask_shuffle]
energy_particle_gflash = energy_particle_gflash[mask_shuffle]
energy_voxel_g4 = energy_voxel_g4[mask_shuffle]
energy_voxel_gflash = energy_voxel_gflash[mask_shuffle]
if plotting:
if energy_particle_gflash.shape[1] == 0:
energy_particle_g4 = np.ones((energy_voxel_g4.shape[0], 1)).astype(np.float32)/10000.0*50000.0
energy_particle_gflash = np.ones((energy_particle_gflash.shape[0], 1)).astype(np.float32)/10000.0*50000.0
energy_g4 = np.sum(energy_voxel_g4, 1, keepdims=True)
energy_gflash = np.sum(energy_voxel_gflash, 1, keepdims=True)
energy_voxel_g4 = np.reshape(energy_voxel_g4, (-1, 1, 10, 10))
energy_voxel_gflash = np.reshape(energy_voxel_gflash, (-1, 1, 10, 10))
energy_voxel_g4 = energy_voxel_g4/np.tile(np.reshape(energy_g4, (-1, 1, 1, 1)), (1, 1, 10, 10))
energy_voxel_gflash = energy_voxel_gflash/np.tile(np.reshape(energy_gflash, (-1, 1, 1, 1)), (1, 1, 10, 10))
#--------------------------------------------------------------------------------------------------------#
shifter_energy_fullrange_g4 = np.mean(energy_g4, 0)
shifter_energy_fullrange_gflash = np.mean(energy_gflash, 0)
scaler_energy_fullrange_g4 = np.std(energy_g4)
scaler_energy_fullrange_gflash = np.std(energy_gflash, 0)
if normalize_energy:
energy_g4 = energy_g4/energy_particle_g4
energy_gflash = energy_gflash/energy_particle_gflash
shifter_g4 = np.mean(energy_voxel_g4, 0)
shifter_gflash = np.mean(energy_voxel_gflash, 0)
scaler_g4 = np.std(energy_voxel_g4, 0)
scaler_gflash = np.std(energy_voxel_gflash, 0)
energy_voxel_g4 = (energy_voxel_g4 - shifter_g4)/scaler_g4
energy_voxel_gflash = (energy_voxel_gflash - shifter_gflash)/scaler_gflash
shifter_energy_g4 = np.mean(energy_g4, 0)
shifter_energy_gflash = np.mean(energy_gflash, 0)
scaler_energy_g4 = np.std(energy_g4, 0)
scaler_energy_gflash = np.std(energy_gflash, 0)
energy_g4 = (energy_g4 - shifter_energy_g4)/scaler_energy_g4
energy_gflash = (energy_gflash - shifter_energy_gflash)/scaler_energy_gflash
return {"energy_gflash":energy_gflash, "energy_particle_gflash":energy_particle_gflash, "energy_voxel_gflash":energy_voxel_gflash,
"energy_g4":energy_g4, "energy_particle_g4":energy_particle_g4, "energy_voxel_g4":energy_voxel_g4,
"shifter_gflash":shifter_gflash, "scaler_gflash":scaler_gflash, "shifter_g4":shifter_g4, "scaler_g4":scaler_g4,
"shifter_energy_gflash":shifter_energy_gflash, "scaler_energy_gflash":scaler_energy_gflash,
"shifter_energy_g4":shifter_energy_g4, "scaler_energy_g4":scaler_energy_g4,
"shifter_energy_fullrange_gflash":shifter_energy_fullrange_gflash, "scaler_energy_fullrange_gflash":scaler_energy_fullrange_gflash,
"shifter_energy_fullrange_g4":shifter_energy_fullrange_g4, "scaler_energy_fullrange_g4":scaler_energy_fullrange_g4}
def load_data_plots(file_path_g4, file_path_gflash):
energy_voxel_g4 = np.load(file_path_g4)[:, 0:100].astype(np.float32)
energy_voxel_gflash = np.load(file_path_gflash)[:, 0:100].astype(np.float32)
energy_particle_g4 = np.load(file_path_g4)[:, 200:201].astype(np.float32)/10000.0
energy_particle_gflash = np.load(file_path_gflash)[:, 200:201].astype(np.float32)/10000.0
if energy_particle_gflash.shape[1] == 0:
energy_particle_g4 = np.ones((energy_voxel_g4.shape[0], 1)).astype(np.float32)/10000.0*50000.0
energy_particle_gflash = np.ones((energy_particle_gflash.shape[0], 1)).astype(np.float32)/10000.0*50000.0
energy_g4 = np.sum(energy_voxel_g4, 1, keepdims=True)
energy_gflash = np.sum(energy_voxel_gflash, 1, keepdims=True)
energy_voxel_g4 = np.reshape(energy_voxel_g4, (-1, 1, 10, 10))
energy_voxel_gflash = np.reshape(energy_voxel_gflash, (-1, 1, 10, 10))
energy_voxel_g4 = energy_voxel_g4/np.tile(np.reshape(energy_g4, (-1, 1, 1, 1)), (1, 1, 10, 10))
energy_voxel_gflash = energy_voxel_gflash/np.tile(np.reshape(energy_gflash, (-1, 1, 1, 1)), (1, 1, 10, 10))
energy_g4 = energy_g4/energy_particle_g4
energy_gflash = energy_gflash/energy_particle_gflash
return {"energy_voxel_g4":energy_voxel_g4, "energy_voxel_gflash":energy_voxel_gflash,
"energy_g4":energy_g4, "energy_gflash":energy_gflash}
### https://www.zijianhu.com/post/pytorch/ema/
class EMA(nn.Module):
def __init__(self, model: nn.Module, decay: float):
super().__init__()
self.decay = decay
self.model = model
self.shadow = deepcopy(self.model)
for param in self.shadow.parameters():
param.detach_()
@torch.no_grad()
def update(self):
if not self.training:
print("EMA update should only be called during training", file=stderr, flush=True)
return
model_params = OrderedDict(self.model.named_parameters())
shadow_params = OrderedDict(self.shadow.named_parameters())
# check if both model contains the same set of keys
assert model_params.keys() == shadow_params.keys()
for name, param in model_params.items():
# see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
# shadow_variable -= (1 - decay) * (shadow_variable - variable)
shadow_params[name].sub_((1. - self.decay) * (shadow_params[name] - param))
model_buffers = OrderedDict(self.model.named_buffers())
shadow_buffers = OrderedDict(self.shadow.named_buffers())
# check if both model contains the same set of keys
assert model_buffers.keys() == shadow_buffers.keys()
for name, buffer in model_buffers.items():
# buffers are copied
shadow_buffers[name].copy_(buffer)
def forward(self, *args, **kwargs):
if self.training:
return self.model(*args, **kwargs)
else:
return self.shadow(*args, **kwargs)
class CacheLoader(Dataset):
def __init__(self, nets, device, dls, gammas, npar, batch_size, num_steps, d, dy, mean_final, var_final,
forward_or_backward='f', forward_or_backward_rev='b', first=False, sample=False):
super().__init__()
self.num_batches = int(npar/batch_size)
self.data = torch.zeros((self.num_batches, batch_size*num_steps, 2, *d)).to(device) # .cpu()
self.y_data = torch.zeros((self.num_batches, batch_size*num_steps, *dy)).to(device) # .cpu()
self.steps_data = torch.zeros((self.num_batches, batch_size*num_steps, 1)).to(device) # .cpu() # steps
for b, dat in enumerate(dls[forward_or_backward]):
#print(b, self.num_batches)
if b == self.num_batches:
break
x = dat[0].float().to(device)
x_orig = x.clone().to(device)
y = dat[1].float().to(device)
steps = torch.arange(num_steps).to(device)
time = torch.cumsum(gammas, 0).to(device).float()
N = x.shape[0]
steps = steps.reshape((1, num_steps, 1)).repeat((N, 1, 1))
time = time.reshape((1, num_steps, 1)).repeat((N, 1, 1))
#gammas_new = gammas.reshape((1, num_steps, 1)).repeat((N, 1, 1))
steps = time
x_tot = torch.Tensor(N, num_steps, *d).to(x.device)
y_tot = torch.Tensor(N, num_steps, *dy).to(y.device)
out = torch.Tensor(N, num_steps, *d).to(x.device)
store_steps = steps
num_iter = num_steps
steps_expanded = time
with torch.no_grad():
if first:
for k in range(num_iter):
gamma = gammas[k]
gradx = grad_gauss(x, mean_final, var_final)
t_old = x + gamma * gradx
z = torch.randn(x.shape, device=x.device)
x = t_old + torch.sqrt(2 * gamma)*z
gradx = grad_gauss(x, mean_final, var_final)
t_new = x + gamma * gradx
x_tot[:, k, :] = x
y_tot[:, k, :] = y
out[:, k, :] = (t_old - t_new) # / (2 * gamma)
else:
for k in range(num_iter):
gamma = gammas[k]
t_old = x + nets[forward_or_backward_rev](x, steps[:, k, :], y, x_orig)
if sample & (k == num_iter-1):
x = t_old
else:
z = torch.randn(x.shape, device=x.device)
x = t_old + torch.sqrt(2 * gamma) * z
t_new = x + nets[forward_or_backward_rev](x, steps[:, k, :], y, x_orig)
x_tot[:, k, :] = x
y_tot[:, k, :] = y
out[:, k, :] = (t_old - t_new)
x_tot = x_tot.unsqueeze(2)
out = out.unsqueeze(2)
batch_data = torch.cat((x_tot, out), dim=2)
flat_data = batch_data.flatten(start_dim=0, end_dim=1)
self.data[b] = flat_data
y_tot = y_tot.unsqueeze(1)
flat_y_data = y_tot.flatten(start_dim=0, end_dim=1)
self.y_data[b] = flat_y_data.flatten(start_dim=0, end_dim=1)
flat_steps = steps_expanded.flatten(start_dim=0, end_dim=1)
self.steps_data[b] = flat_steps
self.data = self.data.flatten(start_dim=0, end_dim=1)
self.y_data = self.y_data.flatten(start_dim=0, end_dim=1)
self.steps_data = self.steps_data.flatten(start_dim=0, end_dim=1)
print('Cache size: {0}'.format(self.data.shape))
def __getitem__(self, index):
item = self.data[index]
x = item[0]
out = item[1]
steps = self.steps_data[index]
y = self.y_data[index]
return x, out, y, steps
def __len__(self):
return self.data.shape[0]
def iterate_ipf(nets, opts, device, dls, gammas, npar, batch_size, num_steps, d, dy, T, mean_final, var_final,
n_iter=200, forward_or_backward='f', forward_or_backward_rev='b', first=False, sample=False):
nets['iter_loss'] = []
nets['iter_et'] = []
CL = CacheLoader(nets=nets,
device=device,
dls=dls,
gammas=gammas,
npar=npar,
batch_size=batch_size,
num_steps=num_steps,
d=d,
dy=dy,
mean_final=mean_final,
var_final=var_final,
forward_or_backward=forward_or_backward,
forward_or_backward_rev=forward_or_backward_rev,
first=first,
sample=sample)
CL = DataLoader(CL, batch_size=batch_size, shuffle=False)
for i_iter in range(n_iter):
ttrain = 0
t0 = time.time()
for (i, data_iter) in enumerate(CL):
(x, out, y, steps_expanded) = data_iter
x = x.to(device)
x_orig = x.clone().to(device)
y = y.to(device)
out = out.to(device)
steps_expanded = steps_expanded.to(device)
eval_steps = T - steps_expanded
t1 = time.time()
#---------------------------------------------------------
pred = nets[forward_or_backward](x, eval_steps, y, x_orig)
loss = F.mse_loss(pred, out)
loss.backward()
opts[forward_or_backward].step()
opts[forward_or_backward].zero_grad()
#---------------------------------------------------------
ttrain += (time.time()-t1)
nets['iter_loss'].append(loss)
nets['iter_et'].append(time.time()-t0)
print(f"{i_iter} - loss: {loss:.6f} ---- elapsed time: {time.time()-t0:.2f} ---- training time: {ttrain:.2f}")
#EMA update
nets[forward_or_backward].update()
def sample_data(dls, data, netsEnergy, netsConv, de, d, num_steps_voxel, num_steps_energy, gammas_voxel, gammas_energy, device,
forward_or_backward = 'f', forward_or_backward_rev = 'b', full_sample = True):
shifter_energy_g4 = data['shifter_energy_g4']
shifter_energy_gflash = data['shifter_energy_gflash']
scaler_energy_g4 = data['scaler_energy_g4']
scaler_energy_gflash = data['scaler_energy_gflash']
shifter_energy_fullrange_g4 = data['shifter_energy_fullrange_g4']
shifter_energy_fullrange_gflash = data['shifter_energy_fullrange_gflash']
scaler_energy_fullrange_g4 = data['scaler_energy_fullrange_g4']
scaler_energy_fullrange_gflash = data['scaler_energy_fullrange_gflash']
shifter_g4 = data['shifter_g4']
shifter_gflash = data['shifter_gflash']
scaler_g4 = data['scaler_g4']
scaler_gflash = data['scaler_gflash']
data_orig = []
data_energy_particle = []
data_x = []
data_y = []
iteration = -1
netsEnergy_ts = []
netsConv_ts = []
for b, dat in enumerate(dls[forward_or_backward]):
x, y = dat
x = x.float().to(device)
y = y.float().to(device)
x_orig = x.clone()
N = x.shape[0]
steps_voxel = torch.arange(num_steps_voxel).to(device)
time_voxel = torch.cumsum(gammas_voxel, 0).to(device).float()
steps_voxel = steps_voxel.reshape((1, num_steps_voxel, 1)).repeat((N, 1, 1))
time_voxel = time_voxel.reshape((1, num_steps_voxel, 1)).repeat((N, 1, 1))
steps_voxel = time_voxel
num_iter_voxel = num_steps_voxel
steps_energy = torch.arange(num_steps_energy).to(device)
time_energy = torch.cumsum(gammas_energy, 0).to(device).float()
steps_energy = steps_energy.reshape((1, num_steps_energy, 1)).repeat((N, 1, 1))
time_energy = time_energy.reshape((1, num_steps_energy, 1)).repeat((N, 1, 1))
steps_energy = time_energy
num_iter_energy = num_steps_energy
energy__shower_tot = torch.Tensor(N, num_steps_energy, *de).to(x.device)
energy__shower_out = torch.Tensor(N, num_steps_energy, *de).to(x.device)
x_tot = torch.Tensor(N, num_steps_voxel, *d).to(x.device)
out = torch.Tensor(N, num_steps_voxel, *d).to(x.device)
shifter_energy_g4_tensor = torch.tensor(shifter_energy_g4).to(x.device)
shifter_energy_gflash_tensor = torch.tensor(shifter_energy_gflash).to(x.device)
scaler_energy_g4_tensor = torch.tensor(scaler_energy_g4).to(x.device)
scaler_energy_gflash_tensor = torch.tensor(scaler_energy_gflash).to(x.device)
shifter_energy_fullrange_g4_tensor = torch.tensor(shifter_energy_fullrange_g4).to(x.device)
shifter_energy_fullrange_gflash_tensor = torch.tensor(shifter_energy_fullrange_gflash).to(x.device)
scaler_energy_fullrange_g4_tensor = torch.tensor(scaler_energy_fullrange_g4).to(x.device)
scaler_energy_fullrange_gflash_tensor = torch.tensor(scaler_energy_fullrange_gflash).to(x.device)
shifter_g4_tensor = torch.tensor(shifter_g4).to(x.device)
shifter_gflash_tensor = torch.tensor(shifter_gflash).to(x.device)
scaler_g4_tensor = torch.tensor(scaler_g4).to(x.device)
scaler_gflash_tensor = torch.tensor(scaler_gflash).to(x.device)
y_current = y.clone()
energy__shower_start = y_current[:,0:1].clone()
energy__shower_target = y_current[:,1:2].clone()
energy__particle = y_current[:,2:3].clone()
energy__shower_orig = energy__shower_start.clone().view(-1, 1, 1, 1)
energy__shower_orig = (energy__shower_orig * scaler_energy_gflash_tensor) + shifter_energy_gflash_tensor
energy__shower_orig = energy__shower_orig * energy__particle.view(-1, 1, 1, 1)
with torch.no_grad():
for k in range(num_iter_energy):
gamma = gammas_energy[k]
t0 = time.time()
#---------------------------------------------------------------------------------------------------#
t_old = energy__shower_start + netsEnergy[forward_or_backward_rev](energy__shower_start,
steps_energy[:, k, :],
energy__particle, energy__shower_start)
if k == num_iter_energy-1:
energy__shower_start = t_old
else:
z = torch.randn(energy__shower_start.shape, device=x.device)
energy__shower_start = t_old + torch.sqrt(2 * gamma) * z
t_new = energy__shower_start + netsEnergy[forward_or_backward_rev](energy__shower_start,
steps_energy[:, k, :],
energy__particle, energy__shower_start)
energy__shower_tot[:, k, :] = energy__shower_start
energy__shower_out[:, k, :] = (t_old - t_new)
#---------------------------------------------------------------------------------------------------#
netsEnergy_ts.append(time.time()-t0)
energy__shower_tot = (energy__shower_tot * scaler_energy_g4_tensor) + shifter_energy_g4_tensor
energy__shower_tot = energy__shower_tot * energy__particle.view(-1, 1, 1)
energy__shower_tot = (energy__shower_tot - shifter_energy_fullrange_g4_tensor) / scaler_energy_fullrange_g4_tensor
energy__shower_start = (energy__shower_start * scaler_energy_gflash_tensor) + shifter_energy_gflash_tensor
energy__shower_start = energy__shower_start * energy__particle.view(-1, 1)
y_current[:,1:2] = energy__shower_tot[:, iteration]
if full_sample:
with torch.no_grad():
for k in range(num_iter_voxel):
gamma = gammas_voxel[k]
t0 = time.time()
#---------------------------------------------------------------------------------------------------#
t_old = x + netsConv[forward_or_backward_rev](x, steps_voxel[:, k, :], y_current, x)
if k == num_iter_voxel-1:
x = t_old
else:
z = torch.randn(x.shape, device=x.device)
x = t_old + torch.sqrt(2 * gamma) * z
t_new = x + netsConv[forward_or_backward_rev](x, steps_voxel[:, k, :], y_current,x )
x_tot[:, k, :] = x
out[:, k, :] = (t_old - t_new)
#---------------------------------------------------------------------------------------------------#
netsConv_ts.append(time.time()-t0)
x_orig = x_orig * scaler_gflash_tensor + shifter_gflash_tensor
x_orig = x_orig * energy__shower_orig
data_orig.append(x_orig.cpu().numpy())
del x_orig
energy__shower_tot = (energy__shower_tot * scaler_energy_fullrange_g4_tensor) + shifter_energy_fullrange_g4_tensor
y_current[:,1:2] = energy__shower_tot[:, iteration]
y_current[:,0:1] = energy__shower_start
data_y.append(y_current.cpu().numpy())
del y_current
data_energy_particle.append(energy__particle.cpu().numpy()*10.0)
del energy__particle
if full_sample:
x_tot = (x_tot * scaler_g4_tensor) + shifter_g4_tensor
sum_old = torch.sum(x_tot, (2,3,4)).view(-1, x_tot.size(1), 1, 1, 1)
sum_new = energy__shower_tot[:,iteration].view(-1, 1, 1, 1, 1)
x_tot = x_tot / sum_old * sum_new
data_x.append(x_tot.cpu().numpy())
del x_tot
else:
data_x = [np.zeros((2,2)),np.zeros((2,2))]
gc.collect()
sample = {"energy_voxel_gflash_orig":np.concatenate(data_orig, 0), # used for En plot
"energy_voxel_gflash_trafo":np.concatenate(data_x, 0),
"energy_gflash_trafo":np.concatenate(data_y, 0), # used for En plot
"energy_particle":np.concatenate(data_energy_particle, 0), # used for En plot
"netsEnergy_ts":np.array(netsEnergy_ts),
"netsConv_ts":np.array(netsConv_ts)}
# # print(torch.cuda.memory_summary())
# del x
# del y
# del steps_voxel
# del time_voxel
# del num_iter_voxel
# del steps_energy
# del time_energy
# del num_iter_energy
# del energy__shower_tot
# del energy__shower_out
# del out
# del shifter_energy_g4_tensor
# del shifter_energy_gflash_tensor
# del scaler_energy_g4_tensor
# del scaler_energy_gflash_tensor
# del shifter_energy_fullrange_g4_tensor
# del shifter_energy_fullrange_gflash_tensor
# del scaler_energy_fullrange_g4_tensor
# del scaler_energy_fullrange_gflash_tensor
# del shifter_g4_tensor
# del shifter_gflash_tensor
# del scaler_g4_tensor
# del scaler_gflash_tensor
# del energy__shower_start
# del energy__shower_target
# del energy__shower_orig
# del t_old
# del z
# del t_new
# del gamma
# del t0
# del sum_old
# del sum_new
# del data_x
# gc.collect()
# torch.cuda.empty_cache()
# print(torch.cuda.memory_summary())
return sample
##----- Original -----##
# x_orig = x_orig * scaler_gflash_tensor + shifter_gflash_tensor
# x_orig = x_orig * energy__shower_orig
# energy__shower_tot = (energy__shower_tot * scaler_energy_fullrange_g4_tensor) + shifter_energy_fullrange_g4_tensor
# x_tot = (x_tot * scaler_g4_tensor) + shifter_g4_tensor
# sum_old = torch.sum(x_tot, (2,3,4)).view(-1, x_tot.size(1), 1, 1, 1)
# sum_new = energy__shower_tot[:,iteration].view(-1, 1, 1, 1, 1)
# x_tot = x_tot / sum_old * sum_new
# y_current[:,1:2] = energy__shower_tot[:, iteration]
# y_current[:,0:1] = energy__shower_start
# data_orig.append(x_orig.cpu().numpy())
# data_y.append(y_current.cpu().numpy())
# data_x.append(x_tot.cpu().numpy())
# data_energy_particle.append(energy__particle.cpu().numpy()*10.0)
def train_en_network(modelEnergy_type, enc_layers_dim, pos_dim, n_iter, abs_path = '/media/marcelomd/HDD2/UFRGS/TCC/Dados'):
## ----------------------------------------------------------------------------------------------------
## Define Models
## ----------------------------------------------------------------------------------------------------
## Energy
if modelEnergy_type == "SQuIRELS":
from score_models import SquirelsScoreNetwork as ScoreNetworkEnergy
elif modelEnergy_type == "Bernstein":
from score_models import BernScoreKAN as ScoreNetworkEnergy
elif modelEnergy_type == "Bottleneck":
from score_models import BottleneckScoreKAGN as ScoreNetworkEnergy
elif modelEnergy_type == "Chebyshev":
from score_models import ChebyScoreKAN as ScoreNetworkEnergy
elif modelEnergy_type == "Fast":
from score_models import FastScoreKAN as ScoreNetworkEnergy
elif modelEnergy_type == "Gram":
from score_models import GramScoreKAN as ScoreNetworkEnergy
elif modelEnergy_type == "Jacobi":
from score_models import JacobiScoreKAN as ScoreNetworkEnergy
elif modelEnergy_type == "Lagrange":
from score_models import LagrangeScoreKAN as ScoreNetworkEnergy
elif modelEnergy_type == "ReLU":
from score_models import ReluScoreKAN as ScoreNetworkEnergy
elif modelEnergy_type == "Wav":
from score_models import WavScoreKAN as ScoreNetworkEnergy
else:
sys.exit("Selected energy model does not exist.")
CUDA = True
device = torch.device("cuda" if CUDA else "cpu")
suffix = 'GFlash_Energy'
num_steps = 20
n = num_steps//2
batch_size = 1024*16
lr = 1e-5
n_iter_glob = 50
gamma_max = 0.001
gamma_min = 0.001
gamma_half = np.linspace(gamma_min, gamma_max, n)
gammas = np.concatenate([gamma_half, np.flip(gamma_half)])
gammas = torch.tensor(gammas).to(device)
T = torch.sum(gammas)
# encoder_layers=[256,256]
# pos_dim=128
# decoder_layers=[256,256]
normalize_energy=True
# model_version = f"_{encoder_layers[0]}_{pos_dim}_{decoder_layers[0]}_"
data_dir_path = f"{abs_path}/datasets/SB_Refinement/"
models_dir_path = f"{abs_path}/repos/sb_ref_kan/models/Energy/{modelEnergy_type}/{enc_layers_dim}_{pos_dim}_{enc_layers_dim}"
logs_path = f"{abs_path}/repos/sb_ref_kan/models/Energy/EnergyLogs"
Path(models_dir_path).mkdir(parents=True, exist_ok=True)
file_path_gflash = data_dir_path + 'run_GFlash01_100k_10_100GeV_full.npy'
file_path_g4 = data_dir_path + 'run_Geant_100k_10_100GeV_full.npy'
data = load_data(file_path_gflash, file_path_g4, normalize_energy=True, shuffle=True, plotting=False)
energy_gflash = data["energy_gflash"]
energy_particle_gflash = data["energy_particle_gflash"]
energy_voxel_gflash = data["energy_voxel_gflash"]
energy_g4 = data["energy_g4"]
energy_particle_g4 = data["energy_particle_g4"]
energy_voxel_g4 = data["energy_voxel_g4"]
npar = int(energy_voxel_g4.shape[0])
X_init = energy_gflash
Y_init = energy_particle_gflash
init_sample = torch.tensor(X_init)#.view(X_init.shape[0], 1, 10, 10)
init_lable = torch.tensor(Y_init)
init_ds = TensorDataset(init_sample, init_lable)
init_dl = DataLoader(init_ds, batch_size=batch_size, shuffle=False)
#init_dl = repeater(init_dl)
# print(init_sample.shape)
X_final = energy_g4
Y_final = energy_particle_g4
final_sample = torch.tensor(X_final)#.view(X_final.shape[0], 1, 10, 10)
final_label = torch.tensor(Y_final)
final_ds = TensorDataset(final_sample, final_label)
final_dl = DataLoader(final_ds, batch_size=batch_size, shuffle=False)
#final_dl = repeater(final_dl)
#mean_final = torch.tensor(0.)
#var_final = torch.tensor(1.*10**3) #infty like
mean_final = torch.zeros(final_sample.size(-1)).to(device)
var_final = 1.*torch.ones(final_sample.size(-1)).to(device)
# print(final_sample.shape)
# print(mean_final.shape)
# print(var_final.shape)
dls = {'f': init_dl, 'b': final_dl}
# from score_models import FastScoreKAN as ScoreNetworkEnergy
i1 = enc_layers_dim
i2 = pos_dim
encoder_layers=[i1,i1]
pos_dim=i2
decoder_layers=[i1,i1]
model_version = f"{encoder_layers[0]}_{pos_dim}_{decoder_layers[0]}"
model_f = ScoreNetworkEnergy(encoder_layers=encoder_layers,
pos_dim=pos_dim,
decoder_layers=decoder_layers,
n_cond = init_lable.size(1)).to(device)
print(f"{modelEnergy_type}{model_version[:-1]}: {sum(p.numel() for p in model_f.parameters())} parameters")
model_f = ScoreNetworkEnergy(encoder_layers=encoder_layers,
pos_dim=pos_dim,
decoder_layers=decoder_layers,
n_cond = init_lable.size(1)).to(device)
model_b = ScoreNetworkEnergy(encoder_layers=encoder_layers,
pos_dim=pos_dim,
decoder_layers=decoder_layers,
n_cond = init_lable.size(1)).to(device)
model_name = str(model_f.__class__)[21:-2]
model_f = torch.nn.DataParallel(model_f)
model_b = torch.nn.DataParallel(model_b)
opt_f = torch.optim.Adam(model_f.parameters(), lr=lr)
opt_b = torch.optim.Adam(model_b.parameters(), lr=lr)
net_f = EMA(model=model_f, decay=0.95).to(device)
net_b = EMA(model=model_b, decay=0.95).to(device)
nets = {'f': net_f, 'b': net_b, 'iter_loss': [], 'iter_et': [] }
opts = {'f': opt_f, 'b': opt_b }
nets['f'].train()
nets['b'].train()
d = init_sample[0].shape # shape of object to diffuse
dy = init_lable[0].shape # shape of object to diffuse
# print(d)
# print(dy)
#print(net_f)
f = open(f"{logs_path}/{model_name}_{model_version}_.txt", 'w', encoding="utf-8")
f.write("loss;elapsed_time;iteration\n")
start_iter=0
for i in range(1, 100):
try:
nets['f'].load_state_dict(torch.load(f"{models_dir_path}/Iter{i}_net_f_{suffix}_{model_name}_{model_version}_.pth", map_location=device))
nets['b'].load_state_dict(torch.load(f"{models_dir_path}/Iter{i}_net_b_{suffix}_{model_name}_{model_version}_.pth", map_location=device))
start_iter = i
except:
continue
if start_iter == 0:
iterate_ipf(nets=nets, opts=opts, device=device, dls=dls, gammas=gammas, npar=npar, batch_size=batch_size,
num_steps=num_steps, d=d, dy=dy, T=T, mean_final=mean_final, var_final=var_final, n_iter=100,
forward_or_backward='f', forward_or_backward_rev='b', first=True)
for l, t in zip(nets['iter_loss'],nets['iter_et']):
f.write(f"{l:.6f};{t:.2f};0\n")
print('--------------- Done iter 0 ---------------')
nets['f'].train()
nets['b'].train()
for i in range(start_iter+1, start_iter+n_iter):
iterate_ipf(nets=nets, opts=opts, device=device, dls=dls, gammas=gammas, npar=npar, batch_size=batch_size,
num_steps=num_steps, d=d, dy=dy, T=T, mean_final=mean_final, var_final=var_final, n_iter=n_iter_glob,
forward_or_backward='b', forward_or_backward_rev='f', first=False)
for l, t in zip(nets['iter_loss'],nets['iter_et']):
f.write(f"{l:.6f};{t:.2f};{i}\n")
print('--------------- Done iter B{:d} ---------------'.format(i))
iterate_ipf(nets=nets, opts=opts, device=device, dls=dls, gammas=gammas, npar=npar, batch_size=batch_size,
num_steps=num_steps, d=d, dy=dy, T=T, mean_final=mean_final, var_final=var_final, n_iter=n_iter_glob,
forward_or_backward='f', forward_or_backward_rev='b', first=False)
for l, t in zip(nets['iter_loss'],nets['iter_et']):
f.write(f"{l:.6f};{t:.2f};{i}\n")
print('--------------- Done iter F{:d} ---------------'.format(i))
torch.save(net_f.state_dict(), f"{models_dir_path}/Iter{i}_net_f_{suffix}_{model_name}_{model_version}_.pth")
torch.save(net_b.state_dict(), f"{models_dir_path}/Iter{i}_net_b_{suffix}_{model_name}_{model_version}_.pth")
f.close()
return 0
def train_conv_network(modelConv_type, enc_layers_dim, temb_dim, conv_dof, n_iter, abs_path = '/media/marcelomd/HDD2/UFRGS/TCC/Dados'):
## ----------------------------------------------------------------------------------------------------
## Define Models
## ----------------------------------------------------------------------------------------------------
## Conv
if modelConv_type == "SQuIRELS":
from score_models import SquirelsScoreNetworkConv as ScoreNetworkConv
elif modelConv_type == "Bernstein":
from score_models import BernScoreKANConv as ScoreNetworkConv
elif modelConv_type == "Bottleneck":
from score_models import BottleneckScoreKAGNConv as ScoreNetworkConv
elif modelConv_type == "Chebyshev":
from score_models import ChebyScoreKANConv as ScoreNetworkConv
elif modelConv_type == "Fast":
from score_models import FastScoreKANConv as ScoreNetworkConv
elif modelConv_type == "Gram":
from score_models import GramScoreKANConv as ScoreNetworkConv
elif modelConv_type == "Jacobi":
from score_models import JacobiScoreKANConv as ScoreNetworkConv
elif modelConv_type == "Lagrange":
from score_models import LagrangeScoreKANConv as ScoreNetworkConv
elif modelConv_type == "ReLU":
from score_models import ReluScoreKANConv as ScoreNetworkConv
elif modelConv_type == "Wav":
from score_models import WavScoreKANConv as ScoreNetworkConv
else:
sys.exit("Selected energy model does not exist.")
CUDA = True
device = torch.device("cuda" if CUDA else "cpu")
suffix = '_GFlash_Conv'
num_steps = 20
n = num_steps//2
batch_size = 1024*8
lr = 1e-5
n_iter_glob = 50
gamma_max = 0.001
gamma_min = 0.001
gamma_half = np.linspace(gamma_min, gamma_max, n)
gammas = np.concatenate([gamma_half, np.flip(gamma_half)])
gammas = torch.tensor(gammas).to(device)
T = torch.sum(gammas)
data_dir_path = f"{abs_path}/datasets/SB_Refinement/"
models_dir_path = f"{abs_path}/repos/sb_ref_kan/models/Conv/{modelConv_type}/{enc_layers_dim}_{temb_dim}_{conv_dof}"
logs_path = f"{abs_path}/repos/sb_ref_kan/models/Conv/ConvLogs"
Path(models_dir_path).mkdir(parents=True, exist_ok=True)
file_path_gflash = data_dir_path + 'run_GFlash01_100k_10_100GeV_full.npy'
file_path_g4 = data_dir_path + 'run_Geant_100k_10_100GeV_full.npy'
data = load_data(file_path_gflash, file_path_g4, normalize_energy=False, shuffle=True, plotting=False)
energy_gflash = data["energy_gflash"]
energy_particle_gflash = data["energy_particle_gflash"]
energy_voxel_gflash = data["energy_voxel_gflash"]
energy_g4 = data["energy_g4"]
energy_particle_g4 = data["energy_particle_g4"]
energy_voxel_g4 = data["energy_voxel_g4"]
npar = int(energy_voxel_g4.shape[0])
X_init = energy_voxel_gflash
Y_init = np.concatenate((energy_gflash, energy_g4, energy_particle_gflash), 1)
init_sample = torch.tensor(X_init).view(X_init.shape[0], 1, 10, 10)
init_lable = torch.tensor(Y_init)
scaling_factor = 7
#init_sample = (init_sample - init_sample.mean()) / init_sample.std() * scaling_factor
init_ds = TensorDataset(init_sample, init_lable)
init_dl = DataLoader(init_ds, batch_size=batch_size, shuffle=False)
#init_dl = repeater(init_dl)
# print(init_sample.shape)
X_final = energy_voxel_g4
Y_final = np.concatenate((energy_g4, energy_gflash, energy_particle_g4), 1)
scaling_factor = 7.
final_sample = torch.tensor(X_final).view(X_final.shape[0], 1, 10, 10)
final_label = torch.tensor(Y_final)
#final_sample = (final_sample - final_sample.mean()) / final_sample.std() * scaling_factor
final_ds = TensorDataset(final_sample, final_label)
final_dl = DataLoader(final_ds, batch_size=batch_size, shuffle=False)
#final_dl = repeater(final_dl)
#mean_final = torch.tensor(0.)
#var_final = torch.tensor(1.*10**3) #infty like
mean_final = torch.zeros(1, 10, 10).to(device)
var_final = 1.*torch.ones(1, 10, 10).to(device)
# print(final_sample.shape)
# print(mean_final.shape)
# print(var_final.shape)
dls = {'f': init_dl, 'b': final_dl}
encoder_layers=[enc_layers_dim,enc_layers_dim]
model_f = ScoreNetworkConv(encoder_layers=encoder_layers,
temb_dim=temb_dim,
conv_dof=conv_dof,
n_cond = init_lable.size(1)).to(device)
model_version = f"{encoder_layers[0]}_{temb_dim}_{conv_dof}"
print(f"{modelConv_type}{model_version}: {sum(p.numel() for p in model_f.parameters())} parameters")
model_f = ScoreNetworkConv(encoder_layers=encoder_layers,
temb_dim=temb_dim,
conv_dof=conv_dof,
n_cond = init_lable.size(1)).to(device)
model_b = ScoreNetworkConv(encoder_layers=encoder_layers,
temb_dim=temb_dim,
conv_dof=conv_dof,
n_cond = init_lable.size(1)).to(device)
model_name = str(model_f.__class__)[21:-2]
model_f = torch.nn.DataParallel(model_f)
model_b = torch.nn.DataParallel(model_b)
opt_f = torch.optim.Adam(model_f.parameters(), lr=lr)
opt_b = torch.optim.Adam(model_b.parameters(), lr=lr)
net_f = EMA(model=model_f, decay=0.95).to(device)
net_b = EMA(model=model_b, decay=0.95).to(device)
nets = {'f': net_f, 'b': net_b, 'iter_loss': [], 'iter_et': [] }
opts = {'f': opt_f, 'b': opt_b }
nets['f'].train()
nets['b'].train()
d = init_sample[0].shape # shape of object to diffuse
dy = init_lable[0].shape # shape of object to diffuse
f = open(f"{logs_path}/{model_name}_{model_version}_.txt", 'w', encoding="utf-8")
f.write("loss;elapsed_time;iteration\n")
print(n_iter)
start_iter=0
for i in range(1, 400):
try:
nets['f'].load_state_dict(torch.load(f"{models_dir_path}/Iter{i}_net_f_{suffix}_{model_name}_{model_version}_.pth", map_location=device))
nets['b'].load_state_dict(torch.load(f"{models_dir_path}/Iter{i}_net_b_{suffix}_{model_name}_{model_version}_.pth", map_location=device))
start_iter = i
except:
continue
if start_iter == 0:
iterate_ipf(nets=nets, opts=opts, device=device, dls=dls, gammas=gammas, npar=npar, batch_size=batch_size,
num_steps=num_steps, d=d, dy=dy, T=T, mean_final=mean_final, var_final=var_final, n_iter=100,
forward_or_backward='f', forward_or_backward_rev='b', first=True)
for l, t in zip(nets['iter_loss'],nets['iter_et']):
f.write(f"{l:.6f};{t:.2f};0\n")
print('--------------- Done iter 0 ---------------')
nets['f'].train()
nets['b'].train()
for i in range(start_iter+1, start_iter+n_iter):
iterate_ipf(nets=nets, opts=opts, device=device, dls=dls, gammas=gammas, npar=npar, batch_size=batch_size,
num_steps=num_steps, d=d, dy=dy, T=T, mean_final=mean_final, var_final=var_final, n_iter=n_iter_glob,
forward_or_backward='b', forward_or_backward_rev='f', first=False)
for l, t in zip(nets['iter_loss'],nets['iter_et']):
f.write(f"{l:.6f};{t:.2f};{i}\n")
print('--------------- Done iter B{:d} ---------------'.format(i))
iterate_ipf(nets=nets, opts=opts, device=device, dls=dls, gammas=gammas, npar=npar, batch_size=batch_size,
num_steps=num_steps, d=d, dy=dy, T=T, mean_final=mean_final, var_final=var_final, n_iter=n_iter_glob,
forward_or_backward='f', forward_or_backward_rev='b', first=False)
for l, t in zip(nets['iter_loss'],nets['iter_et']):
f.write(f"{l:.6f};{t:.2f};{i}\n")