forked from mindspore-lab/mindcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_with_func.py
528 lines (472 loc) · 19.1 KB
/
train_with_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"""Use the Mixed(PyNative+jit) mode to train the network"""
import logging
import os
from time import time
import numpy as np
import mindspore as ms
from mindspore import SummaryRecord, Tensor, nn, ops
from mindspore.communication import get_group_size, get_rank, init
from mindcv.data import create_dataset, create_loader, create_transforms
from mindcv.loss import create_loss
from mindcv.models import create_model
from mindcv.optim import create_optimizer
from mindcv.scheduler import create_scheduler
from mindcv.utils import AllReduceSum, CheckpointManager, get_metrics, set_logger, set_seed
from config import parse_args, save_args # isort: skip
try:
from mindspore import jit
except ImportError:
from mindspore import ms_function as jit
logger = logging.getLogger("mindcv.train_with_func")
def check_args(args):
if args.mode == ms.GRAPH_MODE:
logger.warning("Mode of MindSpore has to be PYNATIVE(1)! Reset `args.mode` to `ms.PYNATIVE_MODE`.")
args.mode = ms.PYNATIVE_MODE
if args.dataset_sink_mode:
logger.warning("Data sink is not yet supported! Reset `args.dataset_sink_mode` to `False`.")
args.dataset_sink_mode = False
if args.ckpt_path != "" or args.resume_opt:
logger.warning(
"Resuming train is not yet supported! Reset `args.ckpt_path` to empty and `args.resume_opt` to False."
)
args.ckpt_path = ""
args.resume_opt = False
if args.amp_cast_list is not None:
logger.warning("Customized amp list is not yet supported! Reset `args.amp_cast_list` to `None`.")
args.amp_cast_list = None
if args.ema:
logger.warning("EMA is not yet supported! Reset `args.ema` to `False`.")
args.ema = False
if args.clip_grad:
logger.warning("Gradient clipping is not yet supported! Reset `args.clip_grad` to `False`.")
args.clip_grad = False
if args.gradient_accumulation_steps != 1:
logger.warning("Gradient accumulation is not yet supported! Reset `args.gradient_accumulation_steps` to `1`.")
args.gradient_accumulation_steps = 1
return args
def main():
args = parse_args()
args = check_args(args)
ms.set_context(mode=args.mode)
if args.distribute:
init()
rank_id, device_num = get_rank(), get_group_size()
ms.set_auto_parallel_context(
device_num=device_num,
parallel_mode="data_parallel",
gradients_mean=True,
)
all_reduce = AllReduceSum()
else:
rank_id, device_num = None, None
all_reduce = None
set_seed(args.seed)
set_logger(name="mindcv", output_dir=args.ckpt_save_dir, rank=rank_id, color=False)
logger.info(
"We recommend installing `termcolor` via `pip install termcolor` "
"and setup logger by `set_logger(..., color=True)`"
)
# create dataset
dataset_train = create_dataset(
name=args.dataset,
root=args.data_dir,
split=args.train_split,
shuffle=args.shuffle,
num_samples=args.num_samples,
num_shards=device_num,
shard_id=rank_id,
num_parallel_workers=args.num_parallel_workers,
download=args.dataset_download,
num_aug_repeats=args.aug_repeats,
)
if args.num_classes is None:
num_classes = dataset_train.num_classes()
else:
num_classes = args.num_classes
# create transforms
num_aug_splits = 0
if args.aug_splits > 0:
assert args.aug_splits == 3, "Currently, only support 3 splits of augmentation"
assert args.auto_augment is not None, "aug_splits should be set with one auto_augment"
num_aug_splits = args.aug_splits
transform_list = create_transforms(
dataset_name=args.dataset,
is_training=True,
image_resize=args.image_resize,
scale=args.scale,
ratio=args.ratio,
hflip=args.hflip,
vflip=args.vflip,
color_jitter=args.color_jitter,
interpolation=args.interpolation,
auto_augment=args.auto_augment,
mean=args.mean,
std=args.std,
re_prob=args.re_prob,
re_scale=args.re_scale,
re_ratio=args.re_ratio,
re_value=args.re_value,
re_max_attempts=args.re_max_attempts,
separate=num_aug_splits > 0,
)
# load dataset
loader_train = create_loader(
dataset=dataset_train,
batch_size=args.batch_size,
drop_remainder=args.drop_remainder,
is_training=True,
mixup=args.mixup,
cutmix=args.cutmix,
cutmix_prob=args.cutmix_prob,
num_classes=num_classes,
transform=transform_list,
num_parallel_workers=args.num_parallel_workers,
separate=num_aug_splits > 0,
)
num_batches = loader_train.get_dataset_size()
train_count = dataset_train.get_dataset_size()
if args.distribute:
train_count = all_reduce(Tensor(train_count, ms.int32))
if args.val_while_train:
dataset_eval = create_dataset(
name=args.dataset,
root=args.data_dir,
split=args.val_split,
num_shards=device_num,
shard_id=rank_id,
num_parallel_workers=args.num_parallel_workers,
download=args.dataset_download,
)
transform_list_eval = create_transforms(
dataset_name=args.dataset,
is_training=False,
image_resize=args.image_resize,
crop_pct=args.crop_pct,
interpolation=args.interpolation,
mean=args.mean,
std=args.std,
)
loader_eval = create_loader(
dataset=dataset_eval,
batch_size=args.batch_size,
drop_remainder=False,
is_training=False,
transform=transform_list_eval,
num_parallel_workers=args.num_parallel_workers,
)
eval_count = dataset_eval.get_dataset_size()
if args.distribute:
eval_count = all_reduce(Tensor(eval_count, ms.int32))
else:
loader_eval = None
eval_count = None
# create model
network = create_model(
model_name=args.model,
num_classes=num_classes,
in_channels=args.in_channels,
drop_rate=args.drop_rate,
drop_path_rate=args.drop_path_rate,
pretrained=args.pretrained,
checkpoint_path=args.ckpt_path,
)
num_params = sum([param.size for param in network.get_parameters()])
ms.amp.auto_mixed_precision(network, amp_level=args.amp_level)
# todo: support customized amp list
# todo: amp EMA model
# create loss
criterion = create_loss(
name=args.loss,
reduction=args.reduction,
label_smoothing=args.label_smoothing,
aux_factor=args.aux_factor,
)
criterion = criterion.to_float(ms.float32) # keep loss in fp32, it will automatically cast input to fp32
# create learning rate schedule
lr_scheduler = create_scheduler(
num_batches,
scheduler=args.scheduler,
lr=args.lr,
min_lr=args.min_lr,
warmup_epochs=args.warmup_epochs,
warmup_factor=args.warmup_factor,
decay_epochs=args.decay_epochs,
decay_rate=args.decay_rate,
milestones=args.multi_step_decay_milestones,
num_epochs=args.epoch_size,
num_cycles=args.num_cycles,
cycle_decay=args.cycle_decay,
lr_epoch_stair=args.lr_epoch_stair,
)
# create optimizer
optimizer = create_optimizer(
network.trainable_params(),
opt=args.opt,
lr=lr_scheduler,
weight_decay=args.weight_decay,
momentum=args.momentum,
nesterov=args.use_nesterov,
filter_bias_and_bn=args.filter_bias_and_bn,
loss_scale=1.0,
eps=args.eps,
)
# define eval metrics.
metrics = get_metrics(num_classes)
# build train_step
train_step = build_train_step(
network,
criterion,
optimizer,
loss_scale_type=args.loss_scale_type,
loss_scale=args.loss_scale,
drop_overflow_update=args.drop_overflow_update,
distribute=args.distribute,
)
essential_cfg_msg = "\n".join(
[
"Essential Experiment Configurations:",
f"MindSpore mode[GRAPH(0)/PYNATIVE(1)]: {args.mode}",
f"Distributed mode: {args.distribute}",
f"Number of devices: {device_num if device_num is not None else 1}",
f"Number of training samples: {train_count}",
f"Number of validation samples: {eval_count}",
f"Number of classes: {num_classes}",
f"Number of batches: {num_batches}",
f"Batch size: {args.batch_size}",
f"Auto augment: {args.auto_augment}",
f"MixUp: {args.mixup}",
f"CutMix: {args.cutmix}",
f"Model: {args.model}",
f"Model parameters: {num_params}",
f"Number of epochs: {args.epoch_size}",
f"Optimizer: {args.opt}",
f"Learning rate: {args.lr}",
f"LR Scheduler: {args.scheduler}",
f"Momentum: {args.momentum}",
f"Weight decay: {args.weight_decay}",
f"Auto mixed precision: {args.amp_level}",
f"Loss scale: {args.loss_scale}({args.loss_scale_type})",
]
)
logger.info(essential_cfg_msg)
save_args(args, os.path.join(args.ckpt_save_dir, f"{args.model}.yaml"), rank_id)
logger.info("Start training")
# Training
ckpt_settings = dict(
name=args.model,
path=args.ckpt_save_dir,
interval=args.ckpt_save_interval,
policy=args.ckpt_save_policy,
keep=args.keep_checkpoint_max,
)
with SummaryRecord(f"./{args.ckpt_save_dir}/summary") as summary_record:
# fmt: off
train(loader_train, loader_eval, network, criterion, optimizer, train_step, metrics, args.epoch_size, args.seed,
ckpt_settings, summary_record, args.val_interval, args.log_interval, rank_id, device_num, all_reduce)
# fmt: on
def train(loader_train, loader_eval, network, criterion, optimizer, train_step, metrics, num_epochs, seed,
ckpt_settings, summary_record, val_interval, log_interval, rank_id, device_num, all_reduce): # fmt: skip
num_batches = loader_train.get_dataset_size()
ckpt_save_name, ckpt_save_dir, ckpt_save_interval, ckpt_save_policy, ckpt_keep_max = ckpt_settings.values()
log_file = os.path.join(ckpt_save_dir, "result.log")
if rank_id in [0, None]:
os.makedirs(ckpt_save_dir, exist_ok=True)
log_line = "".join(
f"{s:<20}" for s in ["Epoch", "TrainLoss", *metrics.keys(), "TrainTime", "EvalTime", "TotalTime"]
)
with open(log_file, "w", encoding="utf-8") as fp: # writing the title of result.log
fp.write(log_line + "\n")
best_acc, best_epoch = 0, -1
need_flush_from_cache = True
ckpt_manager = CheckpointManager(ckpt_save_policy=ckpt_save_policy)
for epoch in range(num_epochs):
epoch_ts = time()
train_loss, train_acc = train_epoch(
loader_train,
network,
criterion,
optimizer,
train_step,
seed=seed,
epoch=epoch,
num_epochs=num_epochs,
reduce_fn=all_reduce,
summary_record=summary_record,
log_interval=log_interval,
rank_id=rank_id,
)
logger.info(f"Training accuracy: {(train_acc.asnumpy()):.4%}")
train_time = time() - epoch_ts
# val while train
val_time = 0
val_acc = np.zeros(len(metrics.keys()), dtype=np.float32)
if loader_eval is not None and (epoch + 1) % val_interval == 0:
val_time = time()
val_acc = test_epoch(loader_eval, network, metrics, all_reduce, device_num)
val_time = time() - val_time
metric_str = "Validation "
for metric_name, metric_value in zip(metrics.keys(), val_acc):
metric_str += f"{metric_name}: {metric_value:.4%}, "
metric_str += f"time: {val_time:.6f}s"
logger.info(metric_str)
if val_acc[0] > best_acc:
best_acc = val_acc[0]
best_epoch = epoch + 1
logger.info(f"=> New best val acc: {val_acc[0]:.4%}")
# save checkpoint
if rank_id in [0, None]:
if best_epoch == epoch + 1: # always save ckpt if cur epoch got best acc
# todo: do we need to flush_from_cache first?
best_ckpt_save_path = os.path.join(ckpt_save_dir, f"{ckpt_save_name}-best.ckpt")
ms.save_checkpoint(network, best_ckpt_save_path, async_save=True)
if (epoch + 1) % ckpt_save_interval == 0 or epoch + 1 == num_epochs:
if need_flush_from_cache:
need_flush_from_cache = flush_from_cache(network)
# save optim for resume
optim_save_path = os.path.join(ckpt_save_dir, f"{ckpt_save_name}_optim.ckpt")
ms.save_checkpoint(optimizer, optim_save_path, async_save=True)
ckpt_save_path = os.path.join(ckpt_save_dir, f"{ckpt_save_name}-{epoch + 1}_{num_batches}.ckpt")
logger.info(f"Saving model to {ckpt_save_path}")
ckpt_manager.save_ckpoint(network, num_ckpt=ckpt_keep_max, metric=val_acc[0], save_path=ckpt_save_path)
# logging
total_time = time() - epoch_ts
logger.info(
f"Total time since last epoch: {total_time:.6f}(train: {train_time:.6f}, val: {val_time:.6f})s, "
f"ETA: {(num_epochs - epoch - 1) * total_time:.6f}s"
)
logger.info("-" * 80)
if rank_id in [0, None]:
log_line = "".join(
f"{s:<20}"
for s in [
f"{epoch + 1}",
f"{train_loss.asnumpy():.6f}",
*[f"{i:.4%}" for i in val_acc],
f"{train_time:.2f}",
f"{val_time:.2f}",
f"{total_time:.2f}",
]
)
with open(log_file, "a", encoding="utf-8") as fp:
fp.write(log_line + "\n")
# summary
summary_record.add_value("scalar", f"train_acc_rank{rank_id}", train_acc)
for metric_name, metric_value in zip(metrics.keys(), val_acc):
summary_record.add_value("scalar", f"val_{metric_name}_rank{rank_id}", Tensor(metric_value))
summary_record.record((epoch + 1) * num_batches)
logger.info("Finish training!")
if loader_eval is not None:
logger.info(f"The best validation {list(metrics.keys())[0]} is: {best_acc:.4%} at epoch {best_epoch}.")
logger.info("=" * 80)
def train_epoch(
dataloader,
network,
criterion,
optimizer,
train_step,
seed,
epoch,
num_epochs,
reduce_fn=None,
summary_record=None,
log_interval=100,
rank_id=None,
):
network.set_train()
criterion.set_train()
optimizer.set_train()
ms.dataset.config.set_seed(seed + epoch)
num_batches = dataloader.get_dataset_size()
epoch_width, batch_width = len(str(num_epochs)), len(str(num_batches))
loss, correct, total = Tensor(0, ms.float32), Tensor(0, ms.float32), Tensor(0, ms.float32)
step_ts = time()
step_time_accum = 0
for batch, (data, label) in enumerate(dataloader.create_tuple_iterator()):
step = epoch * num_batches + batch
loss, logits = train_step(data, label)
if len(label.shape) == 1:
correct += ops.equal(logits.argmax(1), label).sum()
else: # one-hot or soft label
correct += ops.equal(logits.argmax(1), label.argmax(1)).sum()
total += len(data)
step_time_accum += time() - step_ts
if (batch + 1) % log_interval == 0 or (batch + 1) == num_batches or batch == 0:
summary_record.add_value("scalar", f"train_loss_rank{rank_id}", loss)
summary_record.record(step + 1)
if optimizer.dynamic_lr:
lr = optimizer.learning_rate(Tensor(step)) # todo: this is not the real lr since may drop overflow
else:
lr = optimizer.learning_rate
logger.info(
f"Epoch: [{epoch + 1:{epoch_width}d}/{num_epochs:{epoch_width}d}], "
f"batch: [{batch + 1:{batch_width}d}/{num_batches:{batch_width}d}], "
f"loss: {loss.asnumpy():.6f}, "
f"lr: {lr.asnumpy():.6f}, "
f"time: {step_time_accum:.6f}s"
)
step_time_accum = 0
step_ts = time()
dataloader.reset() # why do we need this?
if reduce_fn:
correct, total = reduce_fn(correct), reduce_fn(total)
correct /= total
return loss, correct
def build_train_step(
network, criterion, optimizer, loss_scale_type, loss_scale, drop_overflow_update=True, distribute=True
):
from mindspore.amp import DynamicLossScaler, StaticLossScaler, all_finite
grad_reducer = nn.DistributedGradReducer(optimizer.parameters) if distribute else ops.identity
if loss_scale_type == "fixed":
loss_scaler = StaticLossScaler(scale_value=loss_scale)
elif loss_scale_type == "dynamic":
loss_scaler = DynamicLossScaler(scale_value=loss_scale, scale_factor=2, scale_window=2000)
else:
raise ValueError(f"Loss scale type only support ['fixed', 'dynamic'], but got{loss_scale_type}.")
def forward_fn(data, label):
logits = network(data)
loss = criterion(logits, label)
loss = loss_scaler.scale(loss)
return loss, logits
grad_fn = ops.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
@jit
def train_step(data, label):
(loss, logits), grads = grad_fn(data, label)
grads = grad_reducer(grads)
loss = loss_scaler.unscale(loss)
grads = loss_scaler.unscale(grads)
status = all_finite(grads)
if drop_overflow_update:
if status:
loss = ops.depend(loss, optimizer(grads))
else:
loss = ops.depend(loss, optimizer(grads))
loss = ops.depend(loss, loss_scaler.adjust(status))
# if you want to get anything about training status, return it from here and logging it outside!
return loss, logits
return train_step
def test_epoch(dataloader, network, metrics, reduce_fn=None, device_num=1):
"""Test network accuracy and loss."""
network.set_train(False)
for metric_name, metric in metrics.items():
metric.clear()
for data, label in dataloader.create_tuple_iterator():
pred = network(data)
for metric_name, metric in metrics.items():
metric.update(pred, label)
res_array = ms.Tensor([metric.eval() for metric_name, metric in metrics.items()], ms.float32)
if reduce_fn:
res_array = reduce_fn(res_array)
res_array /= device_num
res_array = res_array.asnumpy()
return res_array
def flush_from_cache(network):
"""Flush cache data to host if tensor is cache enable."""
has_cache_params = False
params = network.get_parameters()
for param in params:
if param.cache_enable:
has_cache_params = True
Tensor(param).flush_from_cache()
return has_cache_params
if __name__ == "__main__":
main()