-
Notifications
You must be signed in to change notification settings - Fork 249
/
Copy pathmpi_math.py
294 lines (214 loc) · 10.8 KB
/
mpi_math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import tensorflow as tf
import numpy as np
import os
ALPHA_EPS = 1e-10
##########################
# Homography/matrix math for MPIs and plane sweep volumes
##########################
# Don't remember why I redefined matrix multiply
# but I'm sure I had a good reason at the time
def tfmm(A, B):
with tf.variable_scope('tfmm'):
return tf.reduce_sum(A[..., :, :, tf.newaxis] * B[..., tf.newaxis, :, :], axis=-2)
# Converts my pose format into 4x4 extrinsic and 3x3 intrinsic matrices
# My rotations are in [down, right, backwards] orientation,
# hence the 'fix_yx' thing to convert from that format [-y x z] to the more conventional [x y z]
def myposes2mats(poses, fix_yx=False):
with tf.variable_scope('myposes2mats'):
def cat(arrs, ax):
return tf.concat(arrs, ax)
def stk(arrs, ax):
return tf.stack(arrs, ax)
c2w = poses[..., :3, :4] + 0.
bottom0 = tf.zeros_like(c2w[..., :1, :3])
bottom1 = tf.ones_like(c2w[..., :1, 3:4])
bottom = tf.concat([bottom0, bottom1], -1)
# fix the -y x thing
if fix_yx:
c2w = cat([c2w[..., :3, 1:2], -c2w[..., :3, 0:1], c2w[..., :3, 2:]], -1)
R = c2w[..., :3, :3] + 0.
t = c2w[..., :3, 3:4] + 0.
T_c2w = cat([c2w, bottom], -2)
N = len(R.get_shape().as_list())
perm = list(range(N-2)) + [N-1, N-2]
R_inv = tf.transpose(R, perm)
t_inv = -tfmm(R_inv, t)
T_w2c = cat([cat([R_inv, t_inv], -1), bottom], -2)
h, w, f = poses[..., 0, -1], poses[..., 1, -1], poses[..., 2, -1]
m_z, m_o = tf.zeros_like(h), tf.ones_like(h)
sh = tf.shape(poses)[:-2]
sh = tf.concat([sh, tf.constant([3]), tf.constant([3])], -1)
with tf.variable_scope('Kstuff'):
K = stk([f, m_z, -w*.5,
m_z, f, -h*.5,
m_z, m_z, -m_o], -1)
K = tf.reshape(K, sh)
K_inv = stk([1./f, m_z, -w*.5/f,
m_z, 1./f, -h*.5/f,
m_z, m_z, -m_o], -1)
K_inv = tf.reshape(K_inv, sh)
T_c2w, T_w2c, K, K_inv = map(lambda x : tf.cast(x, dtype=poses.dtype), [T_c2w, T_w2c, K, K_inv])
return T_c2w, T_w2c, K, K_inv
# To warp a single plane, for PSV creation and MPI rendering
def plane_homogs(pose_t, pose_s, depths, planes_from_t=True, y_flip=True, fix_yx=False):
with tf.variable_scope('plane_homogs'):
T_t2w, _, _, K_t_inv = myposes2mats(pose_t, fix_yx=fix_yx)
_, T_w2s, K_s, _ = myposes2mats(pose_s, fix_yx=fix_yx)
T_t2s = tfmm(T_w2s, T_t2w)
R = T_t2s[..., tf.newaxis, :3,:3]
t = T_t2s[..., tf.newaxis, :3, 3:4]
n = tf.constant(np.array([0,0,1.]), dtype=T_t2s.dtype)
n = tf.reshape(n, [3,1])
nT = tf.transpose(n)
a = tf.reshape(depths, [-1, 1, 1])
if planes_from_t:
H = R - tfmm(t, nT) / a
else:
H = R - tfmm(t, tfmm(nT, R)) / (a + tfmm(nT, t))
H = tfmm(K_s[..., tf.newaxis,:,:], tfmm(H, K_t_inv[..., tf.newaxis,:,:]))
if y_flip:
premat = tf.stack([1,0,0., 0,-1,pose_t[0,-1]-1, 0,0,1.],-1)
premat = tf.cast(premat, dtype=T_t2s.dtype)
premat = tf.reshape(premat, [3,3])
postmat = tf.stack([1,0,0., 0,-1,pose_s[0,-1]-1, 0,0,1.],-1)
postmat = tf.cast(postmat, dtype=T_t2s.dtype)
postmat = tf.reshape(postmat, [3,3])
H = tfmm(postmat, tfmm(H, premat))
return H
# Clone of tf.contrib.image.transform since that fn did not work on the RTX 2080 Ti
def homog_warp(img, H, retcos=False, window=None):
with tf.variable_scope('homog_warp'):
sh = tf.shape(img)
h, w = sh[-3], sh[-2]
H = tf.reshape(tf.concat([H, tf.ones_like(H[:, :1])], -1), [-1,3,3])
bds = tf.stack([0,0,h,w], 0)
if window is not None:
bds = tf.cond(window[3] > 0, lambda : window, lambda : bds)
coords = tf.meshgrid(tf.range(bds[0], bds[2]), tf.range(bds[1], bds[3]), indexing='ij')
# coords = tf.meshgrid(tf.range(h), tf.range(w), indexing='ij')
coords = tf.cast(tf.stack([coords[1], coords[0]], 0), H.dtype) # [2, H, W]
coords_t = tf.concat([coords, tf.ones_like(coords[:1, ...])], 0) # [3, H, W]
coords_t = tf.reshape(H, [-1,3,3,1,1]) * coords_t # [-1, 3, 3, H, W]
coords_t = tf.reduce_sum(coords_t, -3) # [-1, 3, H, W]
coords_t = coords_t[...,:2,:,:] / coords_t[...,-1:,:,:] # [-1, 2, H, W]
warp = tf.transpose(coords_t, [0,2,3,1]) # [-1, H, W, 2]
rect_tf = tf.squeeze(tf.contrib.resampler.resampler(img, warp))
rets = rect_tf
if retcos:
rets = [rect_tf, coords_t]
return rets
# homog_render_fn = lambda data, homog : tf.contrib.image.transform(data, homog, interpolation='BILINEAR')
homog_render_fn = lambda data, homog, window=None : homog_warp(data, homog, window=window)
def render_mpi_homogs(mpi_rgba, pose, newpose, min_disp, max_disp, num_depths, debug=False):
with tf.variable_scope('render_mpi_homogs'):
outs = {}
dispvals = tf.linspace(min_disp, max_disp, num_depths)
H = plane_homogs(newpose, pose, 1./dispvals, planes_from_t=False, y_flip=True, fix_yx=True)
H = tf.reshape(H, [-1, 9])
H = H[:, :8] / H[:, 8:]
data_in = tf.transpose(tf.squeeze(mpi_rgba), [2,0,1,3])
window = tf.cast([0,0,newpose[0,-1],newpose[1,-1]], tf.int32)
mpi_reproj = homog_render_fn(data_in, H, window=window)
mpi_reproj = tf.transpose(mpi_reproj, [1,2,0,3])[tf.newaxis, ...]
# back to front compositing
mpiR_alpha = mpi_reproj[..., 3:4] # 1 H W D 1
mpiR_color = mpi_reproj[..., 0:3] # 1 H W D 3
# Add small ALPHA_EPS to prevent gradient explosion nans from tf.cumprod derivative
weights = mpiR_alpha * tf.cumprod(1.-mpiR_alpha + ALPHA_EPS, -2, exclusive=True, reverse=True) # goddamnit pratul
alpha_acc = tf.reduce_sum(weights[..., 0], -1)
rendering = tf.reduce_sum(weights * mpiR_color, -2)
accum = tf.cumsum(weights * mpiR_color, -2, reverse=True)
return rendering, alpha_acc, accum
# Create a plane sweep volume ('cost volume')
# vectorized on initial axes of img and pose
def make_psv_homogs(img, pose, newpose, dispvals, num_depths, window=None):
with tf.variable_scope('make_cv_homogs'):
sh = tf.shape(pose)[:-2] # [N, 3,4]
H = plane_homogs(newpose, pose, 1./dispvals, planes_from_t=True, y_flip=True, fix_yx=True) # [N, D, 3, 3]
H = tf.reshape(H, [-1, 9]) # [N*D, 9]
H = H[:, :8] / H[:, 8:]
img_sh = tf.shape(tf.squeeze(img))
img = tf.reshape(img, [-1, 1, img_sh[-3], img_sh[-2], img_sh[-1]]) # [N, 1, H, W, 3]
img_tiled = tf.tile(img, [1, num_depths, 1, 1, 1]) # go in as [N, D, H, W, 3]
img_tiled = tf.reshape(img_tiled, [-1, img_sh[-3], img_sh[-2], img_sh[-1]]) # [N*D, H, W, 3]
cvd = homog_render_fn(img_tiled, H, window=window) # come out as [N*D, H, W, 3]
h, w = img_sh[-3], img_sh[-2]
if window is not None:
h = tf.cond(window[3] > 0, lambda : window[2]-window[0], lambda : h)
w = tf.cond(window[3] > 0, lambda : window[3]-window[1], lambda : w)
cvd = tf.reshape(cvd, [-1, num_depths, h, w, img_sh[-1]]) # [N, D, H, W, 3]
cvd = tf.squeeze(tf.transpose(cvd, [2,3,1,4,0])) # [H, W, D, 3, N] or [H, W, D, 3]
return cvd
##########################
#
# 3d projection math for traditional depth map backwards warping
#
##########################
class Pose:
def __init__(self, m, window=None): #, h, w, focal, mat):
self.h = m[0,4]
self.w = m[1,4]
self.f = m[2,4]
self.mat = m[:3,:4]
R = self.mat[:3, :3]
t = self.mat[:3, 3]
RT = tf.transpose(R)
self.invmat = tf.concat([RT, -tf.reduce_sum(RT*t, axis=-1, keep_dims=True)], axis=-1)
if window is None:
w0, h0 = 0., 0.
w1, h1 = self.w, self.h
else:
window = tf.cast(window, m.dtype)
h0 = tf.cond(window[3] > 0, lambda : window[0], lambda : 0.)
w0 = tf.cond(window[3] > 0, lambda : window[1], lambda : 0.)
h1 = tf.cond(window[3] > 0, lambda : window[2], lambda : self.h) - h0
w1 = tf.cond(window[3] > 0, lambda : window[3], lambda : self.w) - w0
# w0, h0 = window[1], window[0]
# w1, h1 = window[3], window[2]
self.w0, self.h0, self.w1, self.h1 = w0, h0, w1, h1
self.xf = (self.w-0) / self.f * .5
self.yf = (self.h-0) / self.f * .5
yvals = (tf.to_float(tf.range(h0, h0+h1)) - self.h*.5) / self.f
xvals = (tf.to_float(tf.range(w0, w0+w1)) - self.w*.5) / self.f
co_y, co_x = tf.meshgrid(yvals, xvals, indexing='ij')
self.cam_co = tf.stack([co_y, co_x, -tf.ones_like(co_y)], axis=-1)
def matmul(self, M, pts):
pts = tf.concat([pts, tf.ones_like(pts[...,:1])], axis=-1)
pts = tf.reduce_sum(M * tf.expand_dims(pts, -2), axis=-1)
return pts
def world2cam(self, pts):
return self.matmul(self.invmat, pts)
def cam2world(self, pts):
return self.matmul(self.mat, pts)
def project_out(self, depths, single=False):
if not single:
depths = tf.expand_dims(depths, axis=-1)
pts = self.cam_co * depths
pts = self.cam2world(pts)
return pts
def project_in(self, pts, clip=False):
pts = self.world2cam(pts)
pts = pts[..., :2] / -pts[..., 2:3]
pts_y = (pts[...,0]/self.yf + 1.) * self.h * .5
pts_x = (pts[...,1]/self.xf + 1.) * self.w * .5
if clip:
pts_y = tf.clip_by_value(pts_y, 0., self.h-1.)
pts_x = tf.clip_by_value(pts_x, 0., self.w-1.)
ret = tf.stack([pts_y, pts_x], axis=-1)
return ret
def warp(img, pose, newpose, depth, single=False, debug=False):
pts = newpose.project_out(depth, single)
pix = pose.project_in(pts, clip=False)
pix = tf.expand_dims(pix, 0)
pix_y, pix_x = pix[...,0], pix[...,1]
mask_y = tf.logical_and(pix_y <= pose.h-1., pix_y >= 0.)
mask_x = tf.logical_and(pix_x <= pose.w-1., pix_x >= 0.)
mask = tf.to_float(tf.logical_and(mask_x, mask_y))
pix_y = tf.clip_by_value(pix_y, 0., pose.h-1.)
pix_x = tf.clip_by_value(pix_x, 0., pose.w-1.)
output = tf.contrib.resampler.resampler(img, tf.stack([pix_x, pix_y], -1))
output_masked = tf.expand_dims(mask, -1) * output
if debug:
return output_masked, mask, pix, output
else:
return output_masked, mask