-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_mindep.py
471 lines (398 loc) · 15.7 KB
/
run_mindep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
from cliqs.compat import *
import sys
import copy
import itertools
import functools
import random
import csv
import pickle
import rfutils
import networkx as nx
#from distributed import Executor, as_completed
import cliqs.mindep as mindep
import cliqs.opt_mindep as opt_mindep
import cliqs.linearize as lin
import cliqs.corpora as corpora
OPTS = {
'fix_content_head': False,
'collapse_flat': True,
'verbose': True,
'remove_fw': False,
'remove_punct': True,
}
LOWER_LENGTH_LIMIT = 3
def load_all_corpora_into_memory(corpora):
for corpus in corpora:
corpus.load_into_memory()
# load_all_corpora_into_memory(corpora.corpora)
def with_open(filename, mode, f):
with open(filename, mode) as infile:
return f(infile)
MODEL_FILENAME_TEMPLATE = "models/%s_%s.dill"
CONDITIONING = opt_mindep.get_deptype
@rfutils.memoize
def load_linearization_model(lang, spec):
return with_open(MODEL_FILENAME_TEMPLATE % (lang, spec), 'rb', pickle.load)
# Make a dataframe from applying deterministic functions to each sentence, and
# from applying random sampling functions to each sentence NUM_RANDOM_SAMPLES
# times. Each column is the result of applying a certain function or a certain
# sample from applying a certain random function.
# E.g., columns are lang, length, det_f_a, det_f_b, random_f_a_1, random_f_a_2,
# ..., random_f_a_100, ...
# In principle it seems it should be faster to apply parallelism here at the
# level of sentences, hence the parallel flag for this function. But in practice
# it looks like that's actually slower than parallelizing over corpora, for some
# reason. Maybe with more cpu-intensive linearization procedures there would be
# gains from sentence-level parallelism?
NUM_RANDOM_SAMPLES = 100
def generate_rows(sentences,
lang,
deterministic_fns,
random_fns,
parallel=False):
def gen_row(i_s):
i, s = i_s
s = corpora.DepSentence.from_digraph(s)
def gen():
yield 'start_line', i
yield 'lang', lang
yield 'length', len(s.nodes())
for det_fn_name, det_fn in deterministic_fns.items():
yield det_fn_name, det_fn(s, lang)
for rand_fn_name, rand_fn in random_fns.items():
for j in range(NUM_RANDOM_SAMPLES):
yield (
"%s%s" % (rand_fn_name, j),
rand_fn(s, lang, j, deptypes)
)
return dict(gen())
if any('per_lang' in k for k in random_fns.keys()):
sentences = list(sentences) # I don't see any other way
deptypes = frozenset({
CONDITIONING(sentence, edge) for sentence in sentences
for edge in sentence.edges_iter(data=True)
})
else:
deptypes = None
if parallel:
die
rows = pmap(gen_row, enumerate(sentences))
else:
# for some obscure reason, when this function is run as part of a
# top-level pmap, you have to do the mapping over sentences like this,
# lest you get pickling errors.
def gen_rows():
for i, s in enumerate(sentences):
if len(s) > LOWER_LENGTH_LIMIT:
yield gen_row((i, s))
rows = gen_rows()
return rows
# Reduction functions
NA = float('nan')
def make_reduction_f(r):
def reduction_f(f):
@functools.wraps(f)
def wrapper(s, *a, **k):
try:
result = f(s, *a, **k)
except Exception as e:
print(e, file=sys.stderr)
return NA
return r(s, linearization=result)
return wrapper
return reduction_f
deplen_f = make_reduction_f(mindep.deplen)
max_embedding_depth_f = make_reduction_f(mindep.max_embedding_depth)
sum_embedding_depth_f = make_reduction_f(mindep.sum_embedding_depth)
def deptypes(s):
for h, d in s.edges():
if h != 0:
yield s.edge[h][d]['deptype']
deplens_f = make_reduction_f(mindep.deplens)
deptypes_f = make_reduction_f(deptypes)
# Deterministic dep len functions
def identity(x, *_):
return x
real_deplen = deplen_f(identity)
real_sum_embedding_depth = sum_embedding_depth_f(identity)
real_max_embedding_depth = max_embedding_depth_f(identity)
def real_deplen(s, *_): # keep
return mindep.deplen(s)
def mhd(s, *_):
""" Mean Heirarchical Distance from Yingqi Jing's presentation at DepLing """
return mean(len(list(path_to_root(s, n))) for n in s.nodes())
def path_to_root(s, n):
while s.in_edges(n):
h = s.head_of(n)
yield h
n = h
def real_best_case_memory_cost(s, *_):
return mindep.best_case_memory_cost(s)
def real_deplen_filtered(*filters):
filters = list(filters)
def deplen(s, *_):
return mindep.deplen(s, filters=filters)
return deplen
def min_deplen(s, *_):
min_deplen, min_deplin = mindep.mindep_projective_alternating(s)
return min_deplen
def min_deplen_opt(**kwds):
def md(s, *_):
min_deplen, _ = mindep.mindep_projective_alternating(s, **kwds)
return min_deplen
return md
def min_deplen_filtered(*filters):
filters = list(filters)
def deplen(s, *_):
_, min_deplin = mindep.mindep_projective_alternating(s)
return mindep.deplen(s, linearization=min_deplin, filters=filters)
return deplen
def ordered_deplen(s, *_):
result, _ = mindep.linearize_by_weight_head_final(s)
return result
def weighted_deplen(s, lang, *_):
weights = WEIGHTS[lang]
lin = opt_mindep.get_linearization(s, weights, thing_fn=CONDITIONING)
score = mindep.deplen(s, lin)
return score
# Random dep len functions
def deplen_random_sample_nobias_filtered(*filters):
filters = list(filters)
def deplen(s, *_):
lin = mindep.randlin_projective(s, head_final_bias=0)[1]
return mindep.deplen(s, linearization=lin, filters=filters)
return deplen
def random_sample_nobias(s, *_):
return mindep.randlin_projective(s)[-1]
def random_sample_opt(**kwds):
def rs(s, *_):
return mindep.randlin_projective(s, **kwds)[0]
return rs
#random_sample_nobias = random_sample_opt(head_final_bias=0)
random_sample_headfinal = random_sample_opt(head_final_bias=1)
def random_sample_best_case_memory_cost(s, *_):
_, lin = mindep.randlin_projective(s)
return mindep.best_case_memory_cost(s, linearization=lin)
def random_sample_weighted(s, *_): # redo these using WeightedLin class
return opt_mindep.randlin_fixed_weights(s, thing_fn=CONDITIONING, head_final=False)[0]
@rfutils.memoize
def get_weights(lang, i, deptypes, head_final):
weights = opt_mindep.rand_fixed_weights(deptypes, head_final=head_final)
return weights
def random_sample_weighted_per_lang(s, lang, i, deptypes):
weights = get_weights(lang, i, deptypes, False)
return opt_mindep.randlin_from_weights(s, weights, CONDITIONING)[0]
def random_sample_weighted_headfinal_per_lang(s, lang, i, deptypes):
weights = get_weights(lang, i, deptypes, True)
return opt_mindep.randlin_from_weights(s, weights, opt_mindep.get_deptype)[0]
def random_sample_weighted_headfinal(s, *_):
return opt_mindep.randlin_fixed_weights(s, thing_fn=opt_mindep.get_deptype, head_final=True)[0]
def random_sample_weighted_best_case_memory_cost(s, *_):
_, lin = opt_mindep.randlin_fixed_weights(s)
return mindep.best_case_memory_cost(s, linearization=lin)
def random_sample_fullyfree(s, *_):
lin = [n for n in s.nodes() if n != 0]
random.shuffle(lin)
return mindep.deplen(s, linearization=[0] + lin)
def random_sample_fullyfree_headfinal(s, *_):
# still broken...
def shift_right_of_descendants(xs, x):
i = xs.index(x)
descendants = closure[x]
indices = [i for i, x in enumerate(xs) if x in descendants]
if not indices:
return xs # no change necessary
right_boundary = indices[-1] + 1
if right_boundary <= i: # CAREFUL
return xs # no change necessary
else:
return itertools.chain(
splice(xs[:right_boundary], i),
[x],
xs[right_boundary:]
)
# make a random linearization
lin = [n for n in s.nodes() if n != 0]
random.shuffle(lin)
closure = [nx.descendants(s, n) for n in sorted(s.nodes())]
# shift each word to be to the right of its transitive descendents
for x in lin:
lin = list(shift_right_of_descendants(lin, x))
assert sorted(lin) == list(range(1, len(s)))
return lin
def splice(xs, i):
for j, x in enumerate(xs):
if j != i:
yield x
# Model-based functions
def random_sample_proj_lin_spec(spec):
def random_sample_proj_lin(s, lang, *_):
m = load_linearization_model(lang, spec)
return lin.proj_lin(m, s)
return random_sample_proj_lin
# Some filters to be used with the *_filtered functions above
def negate(f):
return lambda *args: not f(*args)
def is_medial(sentence, lin, hd):
h, d = hd
nodes = [d for _, d in sentence.out_edges_iter(h)]
nodes.append(h)
nodes.sort()
return nodes[0] == h or nodes[-1] == h
not_medial = negate(is_medial)
def only_left(sentence, lin, hd):
h, d = hd
return lin[d] < lin[h]
def filter_edges(s, filters):
s = copy.deepcopy(s)
lin = {n:n for n in s.node.keys()}
for edge in s.edges():
if not all(edge[0] == 0 or f(s, lin, edge) for f in filters):
s.remove_edge(*edge)
return s
def build_it(lang, corpora=corpora.ud_corpora, parallel=False):
return generate_rows(
corpora[lang].sentences(**OPTS),
lang,
{
'deplen': real_deplen,
#'max_depth': max_embedding_depth_f(identity),
#'sum_depth': sum_embedding_depth_f(identity),
#'bcmc': real_best_case_memory_cost,
#'min_deplen_headfixed': min_deplen_opt(move_head=False),
#'min_deplen': min_deplen,
#'min_deplen_headfinal': ordered_deplen,
#'mhd': mhd,
},
{
'rand_deplen': deplen_f(random_sample_nobias),
#'rand_max_depth': max_embedding_depth_f(random_sample_nobias),
#'rand_sum_depth': sum_embedding_depth_f(random_sample_nobias),
#'rand_proj_lin_r_lic': deplen_f(random_sample_proj_lin_spec('r|lic')),
#'rand_proj_lin_dr_lic': deplen_f(random_sample_proj_lin_spec('dr|lic')),
#'rand_proj_lin_hdr_lic': deplen_f(random_sample_proj_lin_spec('hdr|lic')),
#'rand_proj_lin_r_mle': deplen_f(random_sample_proj_lin_spec('r|moo')),
#'rand_proj_lin_dr_mle': deplen_f(random_sample_proj_lin_spec('dr|moo')),
#'rand_proj_lin_hdr_mle': deplen_f(random_sample_proj_lin_spec('hdr|moo')),
#'rand_proj_lin_perplex': deplen_f(random_sample_proj_lin_spec('hdr+r|oo+n123')),
#'rand_proj_lin_acceptable': deplen_f(random_sample_proj_lin_spec('hdr|n123')),
#'rand_proj_lin_meaningsame': deplen_f(random_sample_proj_lin_spec('hdr|n3')),
#'rand_bcmc': random_sample_best_case_memory_cost,
#'rand_deplen_fixed': random_sample_weighted, # missing lin
'rand_deplen_fixed_per_lang': random_sample_weighted_per_lang,
#'rand_weight_bcmc': random_sample_weighted_best_case_memory_cost,
#'rand_deplen_headfinal': random_sample_headfinal,
#'rand_deplen_headfinal_fixed_per_lang': random_sample_weighted_headfinal_per_lang,
#'rand_known_order': random_sample_known_order,
#'rand_deplen_headfixed': random_sample_opt(move_head=False),
#'rand_deplen_fullyfree': random_sample_fullyfree,
#'rand_deplen_fullyfree_headfinal': deplen_f(random_sample_fullyfree_headfinal),
},
parallel=parallel,
)
def imelt(ds, id_vars):
for d in ds:
id_d = {key:d[key] for key in id_vars}
for column, value in d.items():
if column not in id_vars:
dd = {'variable': column, 'value': value}
dd.update(id_d)
yield dd
def ipostprocess(df, id_vars):
import pandas as pd
ds = (pd.Series.to_dict(row) for i, row in df.iterrows())
melted = imelt(ds, id_vars)
for d in melted:
d['real'] = name_fn(d['variable'])
del d['variable']
yield d
def postprocess(df):
import pandas as pd
dfm = pd.melt(df, id_vars='lang length start_line'.split())
dfm['real'] = dfm['variable'].map(name_fn)
del dfm['variable']
return dfm
def name_fn(var):
d = [
('rand_deplen_headfixed', 'free head-fixed random'),
('rand_deplen_headfinal_fixed_per_lang', 'fixed head-consistent random per language'),
('rand_deplen_headfinal_fixed', 'fixed head-consistent random'),
('rand_deplen_headfinal', 'free head-consistent random'),
('rand_bcmc_fixed', 'fixed random bcmc'),
('rand_bcmc', 'free random bcmc'),
('rand_deplen_fixed_per_lang', 'fixed random per language'),
('rand_deplen_fixed', 'fixed random'),
('rand_deplen_fullyfree_headfinal', 'nonprojective free head-consistent random'),
('rand_deplen_fullyfree', 'nonprojective free random'),
('rand_deplen_gd', 'gd random'),
('rand_deplen', 'free random'),
('rand_known_order', 'known random'),
('min_deplen_headfixed', 'free head-fixed optimal'),
('min_deplen_headfinal', 'free head-consistent optimal'),
('min_deplen_fixed', 'fixed optimal'),
('min_deplen', 'free optimal'),
('deplen', 'real'),
('bcmc', 'real bcmc'),
('mhd', 'mhd'),
]
for prefix, result in d:
if var.startswith(prefix):
return result
else:
return "".join(c for c in var if not c.isdigit())
#executor = Executor()
def pmap(f, xs):
for future in as_completed(executor.map(f, xs)):
yield future.result()
def tap(x):
print(x, file=sys.stderr)
return x
def main(cmd, *args):
if cmd == "run":
langs = tuple(args)
if langs == ('ud',):
langs = corpora.ud_langs
the_corpora = corpora.ud_corpora
elif langs == ('pud',):
langs = corpora.pud_langs
the_corpora = corpora.parallel_corpora
if langs[0] == 'gd':
seed = int(langs[1])
langs = corpora.ud_langs
the_corpora = corpora.gd_corpora[seed]
rows = rfutils.flat(
build_it(lang, parallel=False, corpora=the_corpora)
for lang in langs
)
first_row = rfutils.first(rows)
writer = csv.DictWriter(sys.stdout, first_row.keys())
writer.writeheader()
writer.writerow(first_row)
for row in rows:
writer.writerow(row)
elif cmd == "postprocess":
global pd
import pandas as pd
filenames = args
dfs = map(lambda f: pd.read_csv(f, skipfooter=1), filenames)
rows = rfutils.flat(
ipostprocess(df, "lang length start_line".split())
for df in dfs
)
first_row = rfutils.first(rows)
writer = csv.DictWriter(sys.stdout, first_row.keys())
writer.writeheader()
writer.writerow(first_row)
for row in rows:
writer.writerow(row)
#df = functoosl.reduce(pd.DataFrame.append, map(pd.read_csv, filenames))
#new_df = postprocess(df)
#new_df.to_csv(sys.stdout)
else:
rfutils.err("Unknown command: %s" % cmd)
if __name__ == '__main__':
main(*sys.argv[1:])