-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vae.py
133 lines (118 loc) · 4.61 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import importlib
import os
import torch
from lightning import Trainer, seed_everything
from lightning.pytorch import loggers, callbacks
from groot.common.utils import parse_module_name_from_path, parse_dict_from_module
from groot.models import CNNVAE
from groot.dataio.proteins import ProteinsDataModule
def parse_args():
parser = argparse.ArgumentParser(description="Train VAE model.")
parser.add_argument("config_file", type=str, help="Path to config module")
parser.add_argument("--output_dir", type=str, required=True, help="Path to output directory.")
parser.add_argument("--csv_file", type=str, required=True, help="Path to CSV data.")
parser.add_argument("--expected_kl",
type=float,
default=40,
help="Expected KL-Divergence value.")
parser.add_argument("--batch_size", type=int, default=64, help="Batch size.")
parser.add_argument("--devices",
type=str,
default="-1",
help="Training devices separated by comma.")
parser.add_argument("--epochs", type=int, default=150, help="# Training epochs.")
parser.add_argument("--seed", type=int, default=42, help="Random seed.")
parser.add_argument("--ckpt_path", type=str, help="Checkpoint of model.")
parser.add_argument("--wandb_id", type=str, help="WandB ID to resume.")
parser.add_argument("--prefix", type=str, default="", help="Prefix of checkpoints.")
parser.add_argument("--dataset", type=str, choices=["AAV", "GFP"], required=True)
args = parser.parse_args()
return args
def train(args):
# Create cfg
cfg = importlib.import_module(parse_module_name_from_path(args.config_file))
# general config
seed_everything(args.seed, workers=True)
torch.set_float32_matmul_precision(cfg.precision)
accelerator = "cpu" if args.devices == "-1" else "gpu"
device = torch.device("cuda" if accelerator == "gpu" else "cpu")
# ================== #
# ====== Data ====== #
# ================== #
data_kwargs = cfg.data_kwargs
data_kwargs.update({
"csv_data": args.csv_file,
"seed": args.seed,
"train_batch_size": args.batch_size,
"valid_batch_size": args.batch_size,
})
datamodule = ProteinsDataModule(**data_kwargs)
max_length = datamodule.max_length
neg_floor = datamodule.min_fitness
# =================== #
# ====== Model ====== #
# =================== #
module_kwargs = {
**cfg.encoder_kwargs,
**cfg.latent_kwargs,
**cfg.decoder_kwargs,
**cfg.predictor_kwargs,
**cfg.model_kwargs
}
module_kwargs.update({
"expected_kl": args.expected_kl,
"max_len": max_length,
"device": device,
"neg_floor": neg_floor,
})
module = CNNVAE(**module_kwargs)
if cfg.freeze_encoder:
module.freeze_encoder() # freeze ESM2 encoder
# ====================== #
# ====== Training ====== #
# ====================== #
# Set up dirpath and naming rules
data_name = args.dataset
ckpt_filename = f"{cfg.decoder_type}-{args.prefix}-expkl={args.expected_kl}-vae-{data_name}_" \
+ "{epoch:02d}-{train_loss:.3f}-{valid_loss:.3f}"
ckpt_dirpath = os.path.join(args.output_dir, f"vae_ckpts/{data_name}")
os.makedirs(ckpt_dirpath, exist_ok=True)
logger_list = [
loggers.WandbLogger(
save_dir=args.output_dir,
id=args.wandb_id,
project=cfg.wandb_project,
config=parse_dict_from_module(cfg).update(args.__dict__),
log_model=False,
group=f"{cfg.decoder_type}-{data_name}"
)
]
callback_list = [
callbacks.RichModelSummary(),
callbacks.RichProgressBar(),
callbacks.ModelCheckpoint(
dirpath=ckpt_dirpath,
filename=ckpt_filename,
monitor="valid_loss",
verbose=True,
save_top_k=cfg.num_ckpts,
save_weights_only=False,
save_last=True,
every_n_epochs=cfg.save_every_n_epochs,
)
]
trainer = Trainer(
accelerator=accelerator,
devices=[int(d) for d in args.devices.split(",")],
max_epochs=args.epochs,
default_root_dir=args.output_dir,
logger=logger_list,
callbacks=callback_list,
strategy="ddp_find_unused_parameters_true" if len(args.devices.split(",")) > 1 else "auto",
gradient_clip_val=None,
)
trainer.fit(module, datamodule=datamodule, ckpt_path=args.ckpt_path)
if __name__ == "__main__":
args = parse_args()
train(args)