-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconvert_result.py
executable file
·70 lines (65 loc) · 2.47 KB
/
convert_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import pandas as pd
import numpy as np
from numpy import load
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', required=True, help='path of result file')
# parser.add_argument('--data', type=str, required=True, help="name of dataset")
parser.add_argument('--step', type=int, required=True, help="step of class in test data")
parser.add_argument('--train', required=True, help='path of train data')
parser.add_argument('--test', required=True, help='path of test data')
opt = parser.parse_args()
result = load(opt.path)
result = pd.DataFrame(result)
# print(result)
# train_path = f"data/{opt.data}/processed/random_noise.csv"
# test_path = f"data/{opt.data}/processed/subclass.csv"
df_train = pd.read_csv(opt.train)
df_test = pd.read_csv(opt.test)
# df_train = pd.read_csv(train_path)
# df_test = pd.read_csv(test_path)
start_class = min(set(df_train['label']))
end_class = max(set(df_train['label']))
num_class = len(set(df_train['label']))
results1 = []
top = [0.05, 0.1, 0.15, 0.2]
# top = np.arange(0.05, 0.21, 0.01)
# top = [0.05]
top = [int(len(df_train) * i) for i in top]
n = len(df_train)
# print("Calculate by all samples")
for t in top:
first = (df_train.iloc[np.argsort(result.sum().values)]['isFlipped'][:t] == 1).sum()
last = (df_train.iloc[np.argsort(result.sum().values)]['isFlipped'][-t:] == 1).sum()
results1.append(first/t*100)
# print(first/t*100, last/t*100)
print("OLD:")
print(results1)
# print("Calculate by class")
# create score for each sample
df_class = pd.DataFrame()
i = 0
while i< num_class:
class_scores = result.iloc[i*opt.step:(i+1)*opt.step + 1].sum()
# pd.concat([df_class, class_scores], axis=1)
df_class[i] = class_scores.values
i+=1
# print(df_class)
scores = df_class.min(axis=1).values
# print(scores)
results2 = []
for t in top:
first = (df_train.iloc[np.argsort(scores)]['isFlipped'][:t] == 1).sum()
last = (df_train.iloc[np.argsort(scores)]['isFlipped'][-t:] == 1).sum()
results2.append(first/t*100)
# print(first/t*100, last/t*10)
# print(results)
# for item in results1:
# print("{:.2f}".format(item), end='\t')
# print()
# for item in results2:
# print("{:.2f}".format(item), end='\t')
# print()
print("NEW:")
print(results2)