-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathkuipertest.c
394 lines (348 loc) · 9.6 KB
/
kuipertest.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/************************************************************************
* Copyright (C) 2017-2018 IAIK TU Graz and Fraunhofer AISEC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
***********************************************************************/
/**
* @file kuipertest.c
* @brief Kuiper test statistic.
* @license This project is released under the GNU GPLv3+ License.
* @author See AUTHORS file.
* @version 0.3
*/
/***********************************************************************/
/***
* Works with latest numpy.
*/
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
/***
* 10e-8 Round Factor
*/
#define RFACT 100000000.0f
/***
* QKP Zero Limit for 10e-8
*/
#define QKP_START 3.6f
/***
* Includes.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <Python.h>
#include <numpy/arrayobject.h>
#include <numpy/npy_math.h>
/************************************************************************/
/**
* Functions.
*/
int kuipertest_qkp(float l, float* r);
int kuipertest_qkp_inv(float r, float* l);
int kuipertest_kp_hist(int ne, float* x, float* y, int nx, int ny, float c, float* dp, float* dm, float* v, float* l);
/************************************************************************/
/***
* Q_{KP} function.
*
* IN:
* @param l lambda
*
* OUT:
* @param r = Q_{KP}(l)
*
* @return 0=success, 1=invalid arguments, 2=loop failed
*/
int kuipertest_qkp(float l, float* r)
{
/* init */
float cr = 0.0f;
float pr = 2.0f;
float t;
float d;
int i = 1;
/* check input */
if (l <= 0.0f || r == NULL)
return (1);
/* calc */
do {
/* sum */
t = pow((float)i, 2) * pow(l, 2);
cr += (4.0f * t - 1.0f) * exp((-2.0f) * t);
/* progress */
d = round(fabs(2*cr-pr) * RFACT) / RFACT;
i += 1;
pr = 2*cr;
} while(d != 0.0f && i > 0);
/* check and assign */
if (i < 0)
return (2);
cr = round(cr * RFACT) / RFACT;
*r = cr;
/* success */
return (0);
}
/***
* Q_{KP} inverse function.
*
* IN:
* @param r wanted result
*
* OUT:
* @param l = Q^{-1}_{KP}(r)
*
* @return 0=success, 1=invalid arguments, 2=QKP failed, 3=loop failed
*/
int kuipertest_qkp_inv(float r, float* l)
{
/* init */
float lc = QKP_START;
float s = 0.1f;
float rt;
float d;
int i = 0;
/* check input */
if (r < 0.0f || r > 1.0f || l == NULL)
return (1);
/* calc */
do {
/* do one step */
if (kuipertest_qkp(lc, &rt))
return (2);
d = round((r-rt) * RFACT) / RFACT;
/* adjust step size */
if (d < 0.0f) {
lc += s;
s = s / 10.0f;
}
/* progress */
lc -= s;
i += 1;
} while(d != 0.0f && lc > 0.0f && i > 0);
/* check and assign */
if (i < 0 || lc <= 0.0f)
return (3);
lc = round(lc * RFACT) / RFACT;
*l = lc;
/* success */
return (0);
}
/************************************************************************/
/***
* Calculates the Kuiper test statistic of two discrete
* histogram arrays. The length of the histogram arrays must be
* equal and the histogram entries must be sorted (ascending).
*
* IN:
* @param ne number of entries in x, y
* @param x histogram 1
* @param y histogram 2
* @param nx number of samples in x
* @param ny number of samples in y
* @param c confidence level
*
* OUT:
* @param dp D-plus deviation
* @param dm D-minus deviation
* @param v KP test statistic
* @param l significance level
*
* @return 0=success, 1=invalid arguments, 2=QKP failed
*/
int kuipertest_kp_hist(int ne, float* x, float* y, int nx, int ny, float c, float* dp, float* dm, float* v, float* l)
{
/* check inputs */
if (ne <= 0 || x == NULL || y == NULL || nx < 30 || ny < 30 || c <= 0.0 || c >= 1.0 ||
dp == NULL || dm == NULL || v == NULL || l == NULL)
return (1);
/* init */
int i;
float x_cdf, y_cdf;
float x_scale, y_scale;
float x_sum, y_sum;
float diff_plus, diff_minus;
float dmax_plus, dmax_minus;
float n;
float cd;
float ct;
/* calc scale factors for x and y */
x_sum = 0.0f;
y_sum = 0.0f;
for (i = 0; i < ne; i++) {
x_sum += x[i];
y_sum += y[i];
}
x_scale = (x_sum == 0.0f ? 1.0f : (1.0f / x_sum));
y_scale = (y_sum == 0.0f ? 1.0f : (1.0f / y_sum));
/* calc significance threshold */
n = sqrt( ((float) nx * (float) ny) / (float)(nx + ny) );
cd = n + 0.155f + (0.24f / n);
if (kuipertest_qkp_inv(1.0f - c, &ct))
return (2);
ct /= cd;
/* calc CDFs and get max deviation */
dmax_plus = -2.0f;
dmax_minus = -2.0f;
x_cdf = 0.0f;
y_cdf = 0.0f;
for (i = 0; i < ne; i++) {
/* progress in CDF */
x_cdf += x[i] * x_scale;
y_cdf += y[i] * y_scale;
diff_plus = x_cdf - y_cdf;
diff_minus = y_cdf - x_cdf;
/* get max deviation */
if (diff_plus > dmax_plus)
dmax_plus = diff_plus;
if (diff_minus > dmax_minus)
dmax_minus = diff_minus;
}
dmax_plus = fmax(dmax_plus, 0.0f);
dmax_minus = fmax(dmax_minus, 0.0f);
/* calc KP statistics */
*dp = dmax_plus;
*dm = dmax_minus;
*v = dmax_plus + dmax_minus;
*l = round(ct * RFACT) / RFACT;
/* success */
return (0);
}
/************************************************************************/
/***
* Calculates the Kuiper test statistic of two discrete
* histogram arrays. The length of the histogram arrays must be
* equal and the histogram entries must be sorted (ascending).
*
* Needs the following parameters:
*
* X_Array ..... 1-D numpy histogram array (float32)
* Y_Array ..... 1-D numpy histogram array (float32)
* X_Samples ... number of samples X is based on (int32)
* Y_Samples ... number of samples Y is based on (int32)
* Confid. ..... Confidence level (float32)
*
* It returns the following variables:
*
* V ... KP test statistic
* L ... Significance level
*/
static PyObject* kp_histogram(PyObject* self, PyObject* args)
{
/* init wrapper */
PyArrayObject *x_array;
PyArrayObject *y_array;
NpyIter *x_iter;
NpyIter *y_iter;
int res = -1;
int nx;
int ny;
float c;
float dp;
float dm;
float v;
float l;
/* parse single numpy array argument */
if (!PyArg_ParseTuple(args, "O!O!iif", &PyArray_Type, &x_array, &PyArray_Type, &y_array, &nx, &ny, &c)) {
PyErr_SetString(PyExc_Exception, "Could not parse input arguments!");
goto result;
}
if (c <= 0.0 || c >= 1.0) {
PyErr_SetString(PyExc_Exception, "Confidence level is out of bounds (0 < c < 1)!");
goto result;
}
if (nx <= 0 || ny <= 0) {
PyErr_SetString(PyExc_Exception, "Number of samples is invalid (nx,ny <= 0)!");
goto result;
}
/* check array lengths */
int nex = (int)PyArray_SIZE(x_array);
int ney = (int)PyArray_SIZE(y_array);
if (nex <= 0 || ney <= 0) {
PyErr_SetString(PyExc_Exception, "Input arrays have invalid size (e.g. empty)!");
goto result;
}
if (nex != ney) {
PyErr_SetString(PyExc_Exception, "Input arrays have different size!");
goto result;
}
/* create iterators */
x_iter = NpyIter_New(x_array, NPY_ITER_READONLY, NPY_KEEPORDER, NPY_NO_CASTING, NULL);
if (x_iter == NULL) {
PyErr_SetString(PyExc_Exception, "Could not create iterator for first array!");
goto result;
}
y_iter = NpyIter_New(y_array, NPY_ITER_READONLY, NPY_KEEPORDER, NPY_NO_CASTING, NULL);
if (y_iter == NULL) {
PyErr_SetString(PyExc_Exception, "Could not create iterator for second array!");
NpyIter_Deallocate(x_iter);
goto result;
}
float ** x_dataptr = (float **) NpyIter_GetDataPtrArray(x_iter);
float ** y_dataptr = (float **) NpyIter_GetDataPtrArray(y_iter);
/* KP test */
res = kuipertest_kp_hist(nex, x_dataptr[0], y_dataptr[0], nx, ny, c, &dp, &dm, &v, &l);
/* clean up Numpy */
NpyIter_Deallocate(x_iter);
NpyIter_Deallocate(y_iter);
/* return statistics */
result:
if (res < 0)
return NULL;
else if (res > 0)
return Py_BuildValue("ff", NPY_NAN, NPY_NAN);
else
return Py_BuildValue("ff", v, l);
}
/************************************************************************/
/***
* Define function in module.
*/
static PyMethodDef kuipertest_methods[] =
{
{"kp_histogram", kp_histogram, METH_VARARGS, "Calculates the Kuiper \
test statistic of two discrete histogram arrays (float32)."},
{NULL, NULL, 0, NULL}
};
/**
* Resolve compatibility issues between Python2 and Python3:
* http://python3porting.com/cextensions.html
*/
#if PY_MAJOR_VERSION >= 3
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"kuipertest", /* m_name */
"kuipertest", /* m_doc */
-1, /* m_size */
kuipertest_methods, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL, /* m_free */
};
#endif
#if PY_MAJOR_VERSION >= 3
# define MODULE_MAIN PyInit_kuipertest
#else
# define MODULE_MAIN initkuipertest
#endif
PyMODINIT_FUNC MODULE_MAIN(void)
{
#if PY_MAJOR_VERSION >= 3
PyObject *m;
m = PyModule_Create(&moduledef);
_import_array();
return m;
#else
Py_InitModule("kuipertest", kuipertest_methods);
import_array();
#endif
}