-
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtensor.jl
185 lines (152 loc) · 4.92 KB
/
tensor.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
const options = Dict(Int32 => 3, Int64 => 4, Float32 => 6, Float64 => 7)
let was_enabled = Ref{Int32}()
at_grad_set_enabled(was_enabled, 0)
end
struct TorchGPUOOMError <: Exception end
function no_grad(f; flag = 0)
at_no_grad(flag)
return f()
end
async_free!(x) =
let x = x, ptr = x.ptr, oid = objectid(x)
@async begin
free!(x)
end
return nothing
end
mutable struct Tensor{T, N} <: AbstractArray{T, N}
ptr::Ptr
device::Int
function Tensor{T, N}(ptr::Ptr, dev::Int) where {T, N}
obj = new(ptr, dev)
finalizer(async_free!, obj)
# TURN_ON_LOGGING == true && (logdict[ptr] = (size(obj), stacktrace()))
return obj
end
end
TensorVector{T} = Tensor{T, 1}
TensorMatrix{T} = Tensor{T, 2}
TensorVecOrMat{T} = Union{TensorVector{T}, TensorMatrix{T}}
function Tensor(::Type{T}, sz::Int...; dev = -1) where {T}
ptr = Ref(Ptr{Cvoid}())
dtype = options[T]
sz = length(sz) == 2 ? collect(sz) : reverse(collect(sz))
mem = dev
d = Ref(pointer(sz))
len = length(sz)
# atg_rand
atg_zeros(ptr, d.x, len, dtype, mem)
return Tensor{T, len}(ptr[], dev)
end
Tensor(sz::Int...; dev = -1) = Tensor(Float32, sz...; dev = dev)
Tensor(sz::Int; dev = -1) = Tensor(Float32, Int(sz); dev = dev)
# function Tensor{T,N}(ptr::Ptr) where {T,N}
# Tensor{T,N}(ptr, on(ptr))
# end
function Base.ndims(t::Tensor)
i = Int32[-1]
at_dim(i, t.ptr)
return Int(i[1])
end
function Base.size(t::Tensor)
dims = ndims(t)
sz = zeros(Int32, dims)
at_shape(t.ptr, pointer(sz))
# s = Int.(tuple(sz...))
if t isa TensorMatrix
Int.(tuple(sz...))
else
reverse(Int.(tuple(sz...)))
end
end
function Base.size(t::Tensor, dim::Int)
sz = size(t)
return dim <= length(sz) ? sz[dim] : 1
end
Base.length(t::Tensor) = prod(size(t))
Base.IndexStyle(::Type{<:Tensor}) = IndexCartesian()
# function Base.getindex(t::Tensor{T,N}, I::Vararg{Int,N}) where {T,N}
# # @show reverse!(collect(I)) .- 1, size(t)
# # at_double_value_at_indexes(t.ptr, reverse!(collect(I)) .- 1, N)
# zero(T)
# end
function Base.similar(t::Tensor, ::Type{K}, sz::Int...) where {K}
return Tensor(K, sz...; dev = on(t))
end
Base.similar(t::Tensor{T, N}) where {T, N} = Tensor(T, size(t)...; dev = on(t))
Base.similar(t::Tensor{T, N}, sz::Int...) where {T, N} = similar(t, T, sz...)
Base.similar(t::Tensor, dims::Tuple) = similar(t, dims...)
function Base.copy(t::Tensor{T, N}) where {T, N}
sz = size(t)
z = zeros(T, sz...)
return copyto!(z, t)
end
function Base.copyto!(dest::AbstractArray, src::Tensor)
at_copy_data(src.ptr, dest, length(dest), sizeof(eltype(dest)))
return dest
end
Base.copyto!(dest::Tensor, src::Tensor) = at_copy_(dest.ptr, src.ptr)
function Base.reshape(t::Tensor{T, N}, dims::Union{Colon, Int}...) where {T, N}
ptr = Ref(Ptr{Cvoid}())
dims = Colon() in dims ? Base._reshape_uncolon(t, dims) : dims
dims = length(dims) == 2 ? collect(dims) : reverse(collect(dims))
atg_reshape(ptr, t.ptr, dims, length(dims))
return Tensor{T, length(dims)}(ptr[], on(t))
end
function Base.zero(t::Tensor{T, N}) where {T, N}
ptr = Ref(Ptr{Cvoid}())
atg_zeros_like(ptr, t.ptr)
return Tensor{T, N}(ptr[], on(t))
end
function Base.rand(::Type{Tensor{T}}, sz::Int...; dev = -1) where {T <: Real}
ptr = Ref(Ptr{Cvoid}())
dtype = options[T]
sz = collect(sz)
mem = dev
len = length(sz)
# atg_rand
atg_rand(ptr, sz, len, dtype, mem)
return Tensor{T, len}(ptr[], dev)
end
Base.zeros(::Type{Tensor{T}}, sz::Int...; dev = -1) where {T} = Tensor(T, sz...; dev = dev)
function tensor(x::AbstractArray{T, N}; dev = -1) where {T, N}
sz = if N == 2
collect(size(x))
elseif N == 1
[collect(size(x)); 1]
else
collect(size(x)) |> reverse
end
# d = Ref(pointer(sz))
el_sz_in_bytes = sizeof(eltype(x))
nd = ndims(x)
typ = options[T]
parr = Ref(pointer(x))
ptr = Ref(Ptr{Cvoid}())
at_tensor_of_data(ptr, parr.x, sz, nd, el_sz_in_bytes, typ)
opt = Tensor{Float32, N}(ptr[], dev)
return to(opt; dev = dev)
end
# tensor(x) = x
tensor(x::Fill; kwargs...) = tensor(collect(x); kwargs...)
tensor(x::Tensor; kwargs...) = x
Base.print_array(io::IO, t::Tensor) = Base.print_array(io, collect(t))
Base.show_vector(io::IO, t::Tensor) = Base.show_vector(io, collect(t))
function from_blob(x::AbstractArray{T, N}; dev = -1) where {T, N}
sz = reverse(collect(size(x)))
st = reverse(collect(strides(x)))
ptr = Ref(Ptr{Cvoid}())
at_from_blob(ptr, pointer(x), sz, length(sz), st, length(st), dev)
return Tensor{T, N}(ptr[], dev)
end
function to(x::Tensor{T, N}; dev = -1) where {T, N}
ptr = Ref(Ptr{Cvoid}())
atg_to(ptr, x.ptr, dev)
return Tensor{Float32, N}(ptr[], dev)
end
on(t::Tensor) = t.device
function free!(t::Tensor)
# TURN_ON_LOGGING && delete!(logdict, t.ptr)
return at_free(t.ptr)
end
free!(ptr::Ptr) = at_free(ptr)