-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpv.m
182 lines (170 loc) · 4.73 KB
/
expv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
% [w, err, hump] = expv( t, A, v, tol, m )
% EXPV computes an approximation of w = exp(t*A)*v for a
% general matrix A using Krylov subspace projection techniques.
% It does not compute the matrix exponential in isolation but instead,
% it computes directly the action of the exponential operator on the
% operand vector. This way of doing so allows for addressing large
% sparse problems. The matrix under consideration interacts only
% via matrix-vector products (matrix-free method).
%
% w = expv( t, A, v )
% computes w = exp(t*A)*v using a default tol = 1.0e-7 and m = 30.
%
% [w, err] = expv( t, A, v )
% renders an estimate of the error on the approximation.
%
% [w, err] = expv( t, A, v, tol )
% overrides default tolerance.
%
% [w, err, hump] = expv( t, A, v, tol, m )
% overrides default tolerance and dimension of the Krylov subspace,
% and renders an approximation of the `hump'.
%
% The hump is defined as:
% hump = max||exp(sA)||, s in [0,t] (or s in [t,0] if t < 0).
% It is used as a measure of the conditioning of the matrix exponential
% problem. The matrix exponential is well-conditioned if hump = 1,
% whereas it is poorly-conditioned if hump >> 1. However the solution
% can still be relatively fairly accurate even when the hump is large
% (the hump is an upper bound), especially when the hump and
% ||w(t)||/||v|| are of the same order of magnitude (further details in
% reference below).
%
% Example 1:
% ----------
% n = 100;
% A = rand(n);
% v = eye(n,1);
% w = expv(1,A,v);
%
% Example 2:
% ----------
% % generate a random sparse matrix
% n = 100;
% A = rand(n);
% for j = 1:n
% for i = 1:n
% if rand < 0.5, A(i,j) = 0; end;
% end;
% end;
% v = eye(n,1);
% A = sparse(A); % invaluable for a large and sparse matrix.
%
% tic
% [w,err] = expv(1,A,v);
% toc
%
% disp('w(1:10) ='); disp(w(1:10));
% disp('err ='); disp(err);
%
% tic
% w_matlab = expm(full(A))*v;
% toc
%
% disp('w_matlab(1:10) ='); disp(w_matlab(1:10));
% gap = norm(w-w_matlab)/norm(w_matlab);
% disp('||w-w_matlab|| / ||w_matlab|| ='); disp(gap);
%
% In the above example, n could have been set to a larger value,
% but the computation of w_matlab will be too long (feel free to
% discard this computation).
%
% See also MEXPV, EXPOKIT.
% Roger B. Sidje (rbs@maths.uq.edu.au)
% EXPOKIT: Software Package for Computing Matrix Exponentials.
% ACM - Transactions On Mathematical Software, 24(1):130-156, 1998
function [w, err, hump] = expv( t, A, v, tol, m )
[n,n] = size(A);
if nargin == 3,
tol = 1.0e-7;
m = min(n,30);
end;
if nargin == 4,
m = min(n,30);
end;
anorm = norm(A,'inf');
mxrej = 10; btol = 1.0e-7;
gamma = 0.9; delta = 1.2;
mb = m; t_out = abs(t);
nstep = 0; t_new = 0;
t_now = 0; s_error = 0;
rndoff= anorm*eps;
k1 = 2; xm = 1/m; normv = norm(v); beta = normv;
fact = (((m+1)/exp(1))^(m+1))*sqrt(2*pi*(m+1));
t_new = (1/anorm)*((fact*tol)/(4*beta*anorm))^xm;
s = 10^(floor(log10(t_new))-1); t_new = ceil(t_new/s)*s;
sgn = sign(t); nstep = 0;
w = v;
hump = normv;
while t_now < t_out
nstep = nstep + 1;
t_step = min( t_out-t_now,t_new );
V = zeros(n,m+1);
H = zeros(m+2,m+2);
V(:,1) = (1/beta)*w;
for j = 1:m
p = A*V(:,j);
for i = 1:j
H(i,j) = V(:,i)'*p;
p = p-H(i,j)*V(:,i);
end;
s = norm(p);
if s < btol,
k1 = 0;
mb = j;
t_step = t_out-t_now;
break;
end;
H(j+1,j) = s;
V(:,j+1) = (1/s)*p;
end;
if k1 ~= 0,
H(m+2,m+1) = 1;
avnorm = norm(A*V(:,m+1));
end;
ireject = 0;
while ireject <= mxrej,
mx = mb + k1;
F = expm(sgn*t_step*H(1:mx,1:mx));
if k1 == 0,
err_loc = btol;
break;
else
phi1 = abs( beta*F(m+1,1) );
phi2 = abs( beta*F(m+2,1) * avnorm );
if phi1 > 10*phi2,
err_loc = phi2;
xm = 1/m;
elseif phi1 > phi2,
err_loc = (phi1*phi2)/(phi1-phi2);
xm = 1/m;
else
err_loc = phi1;
xm = 1/(m-1);
end;
end;
if err_loc <= delta * t_step*tol,
break;
else
t_step = gamma * t_step * (t_step*tol/err_loc)^xm;
s = 10^(floor(log10(t_step))-1);
t_step = ceil(t_step/s) * s;
if ireject == mxrej,
error('The requested tolerance is too high.');
end;
ireject = ireject + 1;
end;
end;
mx = mb + max( 0,k1-1 );
w = V(:,1:mx)*(beta*F(1:mx,1));
beta = norm( w );
hump = max(hump,beta);
t_now = t_now + t_step;
t_new = gamma * t_step * (t_step*tol/err_loc)^xm;
s = 10^(floor(log10(t_new))-1);
t_new = ceil(t_new/s) * s;
err_loc = max(err_loc,rndoff);
s_error = s_error + err_loc;
end;
err = s_error;
hump = hump / normv;