-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuy_hold.py
83 lines (66 loc) · 2.51 KB
/
buy_hold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from datetime import datetime
import backtrader as bt
import backtrader.analyzers as btanalyzers
import backtrader.feeds as btfeeds
from backtrader_plotting import Bokeh
from backtrader_plotting.schemes import Blackly
class Buy_and_Hold(bt.Strategy):
def log(self, txt, dt=None):
'''Buy and Hold'''
dt = dt or self.datas[0].datetime.date(0)
print(f'{dt.isoformat()}, {txt}')
def __init__(self):
# 鎖定"收盤價"在 datas[0] 的收盤價
self.dataclose = self.datas[0].close
self.order = None
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
return
if order.status in [order.Completed]:
if order.isbuy():
self.log(f'已購買於 {order.executed.price}')
elif order.issell():
self.log(f'已賣出於 {order.executed.price}')
self.bar_executed = len(self)
self.order = None
def next(self):
self.log(f'收盤價, {self.dataclose[0]}')
# 假設沒有倉位(股票資產)
if not self.position:
# 今日收盤價 < 昨日收盤價
if self.dataclose[0] < self.dataclose[-1]:
# 昨日收盤價 < 前日收盤價
if self.dataclose[-1] < self.dataclose[-2]:
self.log(f'購買信號, {self.dataclose[0]}')
self.order = self.buy(size=1000)
else:
if len(self) >= (self.bar_executed + 5):
self.log(f'賣出信號 {self.dataclose[0]}')
self.order = self.sell(size=1000)
target_stock = '0056.TW'
cerebro = bt.Cerebro()
cerebro.broker.setcash(1e6)
cerebro.broker.setcommission(commission=0.0025)
data = bt.feeds.GenericCSVData(
dataname=f'./data/{target_stock}.csv',
nullvalue=0.0,
dtformat=('%Y-%m-%d'),
datetime=0,
open=1,
high=2,
low=3,
close=4,
volume=6,
)
cerebro.adddata(data)
cerebro.addstrategy(Buy_and_Hold)
cerebro.addanalyzer(bt.analyzers.TradeAnalyzer, _name='TradeAnalyzer') # 交易分析 (策略勝率)
cerebro.addanalyzer(bt.analyzers.PeriodStats, _name='PeriodStats') # 交易基本統計分析
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='DrawDown') # 回落統計
cerebro.addanalyzer(bt.analyzers.SQN, _name='SQN') # 期望獲利/標準差 System Quality Number
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='SharpeRatio') # 夏普指數
print('投資 > 起始資產 %.2f 💲' % cerebro.broker.getvalue())
cerebro.run()
print('投資 > 結束資產 %.2f 💲' % cerebro.broker.getvalue())
investment_plot = Bokeh(style='bar', plot_mode='single', scheme=Blackly())
cerebro.plot(investment_plot)