-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
800 lines (779 loc) · 34.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta
name="description"
content="ICDAR '23: Inv3D: a high-resolution 3D invoice dataset for template-guided single-image document unwarping"
/>
<meta
name="keywords"
content="Document Unwarping, Dataset, Template, OCR, Transformer"
/>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>
Inv3D: a high-resolution 3D invoice dataset for template-guided
single-image document unwarping
</title>
<link
rel="stylesheet"
href="./static/fonts/fontawesome/css/fontawesome.min.css"
/>
<link
rel="stylesheet"
href="./static/fonts/fontawesome/css/brands.css"
rel="stylesheet"
/>
<link
rel="stylesheet"
href="./static/fonts/fontawesome/css/solid.css"
rel="stylesheet"
/>
<link rel="stylesheet" href="./static/css/bulma.min.css" />
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css" />
<link rel="stylesheet" href="./static/css/bulma-slider.min.css" />
<link rel="stylesheet" href="./static/css/fonts.css" />
<link rel="stylesheet" href="./static/css/academicons.min.css" />
<link rel="stylesheet" href="./static/css/index.css" />
<link rel="icon" href="./static/images/favicon.ico" />
<script src="./static/js/jquery.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Inv3D</h1>
<h1 class="title is-2 publication-title">
A high-resolution 3D invoice dataset for template-guided
single-image document unwarping
</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a
href="https://www.fzi.de/team/felix-hertlein/"
target="_blank"
>Felix Hertlein</a
>
<span class="author-block"
>,
<a href="https://a-nau.github.io" target="_blank"
>Alexander Naumann</a
>
</span>
</span>
<span class="author-block">
and
<a
href="https://www.linkedin.com/in/patrick-philipp-97a240199/"
target="_blank"
>Patrick Philipp</a
>
</span>
</div>
<div class="is-size-6 publication-authors">
<span class="author-block">
FZI Research Center for Information Technology, Karlsruhe,
Germany
</span>
<br />
<span class="author-block">
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<!-- <span class="link-block">-->
<!-- <a href="" class="external-link button is-normal is-rounded is-dark">-->
<!-- <span class="icon">-->
<!-- <i class="fas fa-file-pdf"></i>-->
<!-- </span>-->
<!-- <span>Paper (tbd)</span>-->
<!-- </a>-->
<!-- </span>-->
<span class="link-block">
<a
href="https://link.springer.com/article/10.1007/s10032-023-00434-x"
class="external-link button is-normal is-rounded is-dark"
target="_blank"
>
<span class="icon">
<i class="ai ai-springer" style="font-size: 1.2rem"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Code Generation Link. -->
<span class="link-block">
<a
href="https://github.com/FelixHertlein/inv3d-generator"
class="external-link button is-normal is-rounded is-dark"
target="_blank"
>
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code Dataset Generation</span>
</a>
</span>
<!-- Code Inference Link. -->
<span class="link-block">
<a
href="https://github.com/FelixHertlein/inv3d-model"
class="external-link button is-normal is-rounded is-dark"
target="_blank"
>
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code Inference & Models</span>
</a>
</span>
<br>
<!-- Code Training Link. -->
<span class="link-block">
<a
href="https://github.com/FelixHertlein/inv3d-model"
class="external-link button is-normal is-rounded is-dark"
target="_blank"
>
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code Training/Evaluation</span>
</a>
</span>
<!-- Dataset Link. -->
<span class="link-block">
<a
href="#Downloads"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Data</span>
</a>
</span>
<!-- Demo Link. -->
<span class="link-block">
<a
href="https://felixhertlein.de/docrefine/home"
class="external-link button is-normal is-rounded is-dark"
target="_blank"
>
<span class="icon">
<i class="far fa-rocket"></i>
</span>
<span>Demo</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Numerous business workflows involve printed forms, such as
invoices or receipts, which are often manually digitalized to
persistently search or store the data. As hardware scanners are
costly and inflexible, smartphones are increasingly used for
digitalization. Here, processing algorithms need to deal with
prevailing environmental factors, such as shadows or crumples.
Current state-of-the-art approaches learn supervised image
dewarping models based on pairs of raw images and rectification
meshes. The available results show promising predictive
accuracies for dewarping, but generated errors still lead to
sub-optimal information retrieval.
</p>
<p>
In this paper, we explore the potential of improving dewarping
models using additional, structured information in the form of
invoice templates. We provide two core contributions: (1) a
novel dataset, referred to as Inv3D, comprising synthetic and
real-world high-resolution invoice images with structural
templates, rectification meshes, and a multiplicity of per-pixel
supervision signals and (2) a novel image dewarping algorithm,
which extends the state-of-the-art approach GeoTr to leverage
structural templates using attention.
</p>
<p>
Our extensive evaluation includes an implementation of DewarpNet
and shows that exploiting structured templates can improve the
performance for image dewarping. We report superior performance
for the proposed algorithm on our new benchmark for all metrics,
including an improved local distortion of 26.1 %. We made our
new dataset and all code publicly available on this website.
</p>
</div>
</div>
</div>
<br />
<!--/ Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">GeoTrTemplate</h2>
<div class="content has-text-justified">
We present a model named GeoTrTemplate, which leverages a-priori
known templates in document dewarping. Our model extends the GeoTr
model by <a href="#feng2021">Feng et al. [1]</a>.
</div>
<p>
<img src="static/images/overview.jpg" width="80%" />
<br />
<span style="font-size: small">
<b>Figure</b>: We take a photo and the corresponding document
template as RGB images as input and generate image
representations. These representations are combined using a
transformer architecture and subsequently upsampled to create
the backward mapping. Ultimately, the backward map is applied to
the source image, resulting in a geometrically normalized image.
</span>
<br />
</p>
<br />
<br />
<br />
<h2 class="title is-3">Inv3D Dataset</h2>
<div class="content has-text-justified">
We present a novel high-resolution dataset with template
information, 3D renderings, a multiplicity of supervision signal
maps, and backward transforms to enable designated learning of
structural features for image dewarping.
<ul>
<li>25,000 images with full 2D and 3D annotations</li>
<li>
created using 100 HTML templates for a wide layout variety
</li>
<li>fully randomized realistic content</li>
</ul>
</div>
<section class="hero is-light is-small">
<div class="hero-body">
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<div class="item">
<div class="item-content">
<img src="static/images/example/flat_document.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Flat document</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/example/flat_information_delta.png"
/>
<div class="item-caption-wrapper">
<div class="item-caption">Flat information delta</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/flat_template.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Flat template</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/flat_text_mask.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Flat text mask</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/example/ground_truth_tags_vis.png"
/>
<div class="item-caption-wrapper">
<div class="item-caption">Ground truth tags</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_document.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Warped document</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_albedo.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Warped albedo map</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_angle.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Warped angle map</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_curvature.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Warped curvature map</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_depth.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Warped depth map</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_normal.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Warped normal map</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_recon.png" />
<div class="item-caption-wrapper">
<div class="item-caption">
Warped reconstruction map
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_text_mask.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Warped text mask</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_UV.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Warped UV map</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_WC.png" />
<div class="item-caption-wrapper">
<div class="item-caption">
Warped world coordinates
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img src="static/images/example/warped_BM.png" />
<div class="item-caption-wrapper">
<div class="item-caption">Backward mapping</div>
</div>
</div>
</div>
</div>
Randomly sampled image from Inv3D.
</div>
</div>
</section>
<br />
<br />
<br />
<h2 class="title is-3">Inv3DReal Dataset</h2>
<div class="content has-text-justified">
We introduce a real-world dataset, to measure the performance of
dewarping models under realistic conditions. Inv3DReal consists of
360 pictures displaying printed and altered invoices taken by a
smartphone camera under different lighting conditions and
backgrounds.
<ul style="display: flex; width: 100%; gap: 3em">
<li>
six different deformations
<ul>
<li>perspective</li>
<li>curled</li>
<li>fewfold</li>
<li>multifold</li>
<li>crumples easy</li>
<li>crumples hard</li>
</ul>
</li>
<li style="margin: 0">
three different settings
<ul>
<li>bright</li>
<li>colored</li>
<li>shadow</li>
</ul>
</li>
</ul>
</div>
<section class="hero is-light is-small">
<div class="hero-body">
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<!-- Crumples hard -->
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_crumpleshard_bright.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Crumples hard & bright setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_crumpleshard_color.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Crumples hard & color setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_crumpleshard_shadow.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Crumples hard & shadow setting
</div>
</div>
</div>
</div>
<!-- Crumples easy -->
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_crumpleseasy_bright.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Crumples easy & bright setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_crumpleseasy_color.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Crumples easy & color setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_crumpleseasy_shadow.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Crumples easy & shadow setting
</div>
</div>
</div>
</div>
<!-- Multifold -->
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_multifold_bright.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Multifold & bright setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_multifold_color.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Multifold & color setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_multifold_shadow.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Multifold & shadow setting
</div>
</div>
</div>
</div>
<!-- Fewfold -->
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_fewfold_bright.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Fewfold & bright setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_fewfold_color.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Fewfold & color setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_fewfold_shadow.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Fewfold & shadow setting
</div>
</div>
</div>
</div>
<!-- Curled -->
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_curled_bright.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Curled & bright setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_curled_color.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">Curled & color setting</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_curled_shadow.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Curled & shadow setting
</div>
</div>
</div>
</div>
<!-- Perspective -->
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_perspective_bright.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Perspective & bright setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_perspective_color.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Perspective & color setting
</div>
</div>
</div>
</div>
<div class="item">
<div class="item-content">
<img
src="static/images/real/warped_document_perspective_shadow.jpg"
/>
<div class="item-caption-wrapper">
<div class="item-caption">
Perspective & shadow setting
</div>
</div>
</div>
</div>
</div>
Randomly sampled image from Inv3DReal.
</div>
</div>
</section>
<br />
<br />
<br />
<section class="section" id="Downloads">
<div class="container is-max-desktop content">
<h2 class="title">Downloads</h2>
<h3 class="title">Samples</h3>
<table>
<tr><td>Inv3D sample 00001</td><td>41.3 MB</td><td><a href="static/downloads/inv3d_sample_00001.zip">Download</a></td></tr>
<tr><td>Inv3D sample 00002</td><td>46.1 MB</td><td><a href="static/downloads/inv3d_sample_00002.zip">Download</a></td></tr>
<tr><td>Inv3D sample 00003</td><td>42.9 MB</td><td><a href="static/downloads/inv3d_sample_00003.zip">Download</a></td></tr>
</table>
<h3 class="title">Inv3D</h3>
<table>
<tr><td>Meta data</td><td>1.7 MB</td><td><a href="https://radar.kit.edu/radar/en/dataset/LyhGPnuCngvdtabM" target="_blank">Link</a></td></tr>
<tr><td>Test split</td><td>131.7 GB</td><td><a href="https://radar.kit.edu/radar/en/dataset/lvwLUTAbBhcjdTbB" target="_blank">Link</a></td></tr>
<tr><td>Validation split</td><td>128.1 GB</td><td><a href="https://radar.kit.edu/radar/en/dataset/GPweoqzKRRZGOAEE" target="_blank">Link</a></td></tr>
<tr><td>Train split part 1 of 4</td><td>149.8 GB</td><td><a href="https://radar.kit.edu/radar/en/dataset/JnvMMjtvIjxpUpGz" target="_blank">Link</a></td></tr>
<tr><td>Train split part 2 of 4</td><td>150.9 GB</td><td><a href="https://radar.kit.edu/radar/en/dataset/ihpFPDjGMMpcPcRF" target="_blank">Link</a></td></tr>
<tr><td>Train split part 3 of 4</td><td>149.5 GB</td><td><a href="https://radar.kit.edu/radar/en/dataset/gbiTkBlCTWttcdlv" target="_blank">Link</a></td></tr>
<tr><td>Train split part 4 of 4</td><td>149.9 GB</td><td><a href="https://radar.kit.edu/radar/en/dataset/loetxlbsNkFYeCjI" target="_blank">Link</a></td></tr>
</table>
<h3 class="title">Inv3DReal</h3>
<table>
<tr><td>Inv3DReal part 1 of 2</td><td>65.4 MB</td><td><a href="static/downloads/inv3d_real_part_1_of_2.zip">Download</a></td></tr>
<tr><td>Inv3DReal part 2 of 2</td><td>72.5 MB</td><td><a href="static/downloads/inv3d_real_part_2_of_2.zip">Download</a></td></tr>
</table>
</div>
</section>
<br />
<br />
<br />
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h3 class="title">BibTeX</h3>
<pre style="text-align: left">
<code>
@article{Hertlein2023,
title = {Inv3D: a high-resolution 3D invoice dataset for template-guided single-image document unwarping},
author = {Hertlein, Felix and Naumann, Alexander and Philipp, Patrick},
year = 2023,
month = {Apr},
day = 29,
journal = {International Journal on Document Analysis and Recognition (IJDAR)},
doi = {10.1007/s10032-023-00434-x},
ISSN = {1433-2825},
url = {https://doi.org/10.1007/s10032-023-00434-x}
}
</code>
</pre>
</div>
</section>
<br />
<br />
<br />
<h2 class="title is-4">References</h2>
<div class="content has-text-justified">
<div style="color: gray" id="feng2021">
[1] Feng, H., Wang, Y., Zhou, W., et al.: Doctr: Document image
transformer for geometric unwarping and illumination correction.
In: Proceedings of the 29th ACM International Conference on
Multimedia, pp 273–281 (2021a)
</div>
</div>
</div>
</div>
<div class="column is-centered"></div>
</div>
<footer class="footer">
<div class="container">
<div class="content has-text-centered">
<a
class="icon-link"
href="https://link.springer.com/content/pdf/10.1007/s10032-023-00434-x.pdf"
target="_blank"
class="external-link"
>
<i class="fas fa-file-pdf"></i>
</a>
<a
class="icon-link"
href="https://github.com/felixhertlein/"
target="_blank"
class="external-link"
disabled
>
<i class="fab fa-github"></i>
</a>
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p style="text-align: center">
This website template is borrowed from
<a
href="https://github.com/nerfies/nerfies.github.io"
target="_blank"
>https://nerfies.github.io</a
>
</p>
<p style="text-align: center">© Felix Hertlein, 2023</p>
</div>
</div>
</div>
</div>
</footer>
</section>
</body>
</html>