-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_distractors_wordnet.py
45 lines (40 loc) · 1.35 KB
/
generate_distractors_wordnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# -*- coding: utf-8 -*-
"""Generate_Distractors_Wordnet.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/107-wTgLfxq-rJVYm8uEvV57bK2vO9Tw2
"""
import nltk
nltk.download('wordnet')
from nltk.corpus import wordnet as wn
def get_distractors_wordnet(syn,word):
distractors=[]
word= word.lower()
orig_word = word
if len(word.split())>0:
word = word.replace(" ","_")
hypernym = syn.hypernyms()
if len(hypernym) == 0:
return distractors
for item in hypernym[0].hyponyms():
name = item.lemmas()[0].name()
#print ("name ",name, " word",orig_word)
if name == orig_word:
continue
name = name.replace("_"," ")
name = " ".join(w.capitalize() for w in name.split())
if name is not None and name not in distractors:
distractors.append(name)
return distractors
def get_wordsense(sent,word):
word= word.lower()
if len(word.split())>0:
word = word.replace(" ","_")
synsets = wn.synsets(word,'n')
if synsets:
wup = max_similarity(sent, word, 'wup', pos='n')
adapted_lesk_output = adapted_lesk(sent, word, pos='n')
lowest_index = min (synsets.index(wup),synsets.index(adapted_lesk_output))
return synsets[lowest_index]
else:
return None