forked from official-stockfish/nnue-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
177 lines (152 loc) · 9.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import model as M
import nnue_dataset
import pytorch_lightning as pl
import features
import os
import sys
import torch
from torch import set_num_threads as t_set_num_threads
from pytorch_lightning import loggers as pl_loggers
from torch.utils.data import DataLoader, Dataset
def make_data_loaders(train_filenames, val_filenames, feature_set, num_workers, batch_size, filtered, random_fen_skipping, wld_filtered, early_fen_skipping, param_index, main_device, epoch_size, val_size):
# Epoch and validation sizes are arbitrary
features_name = feature_set.name
train_infinite = nnue_dataset.SparseBatchDataset(features_name, train_filenames, batch_size, num_workers=num_workers,
filtered=filtered, random_fen_skipping=random_fen_skipping, wld_filtered=wld_filtered, early_fen_skipping=early_fen_skipping, param_index=param_index, device=main_device)
val_infinite = nnue_dataset.SparseBatchDataset(features_name, val_filenames, batch_size, filtered=filtered,
random_fen_skipping=random_fen_skipping, wld_filtered=wld_filtered, early_fen_skipping=early_fen_skipping, param_index=param_index, device=main_device)
# num_workers has to be 0 for sparse, and 1 for dense
# it currently cannot work in parallel mode but it shouldn't need to
train = DataLoader(nnue_dataset.FixedNumBatchesDataset(train_infinite, (epoch_size + batch_size - 1) // batch_size), batch_size=None, batch_sampler=None)
val = DataLoader(nnue_dataset.FixedNumBatchesDataset(val_infinite, (val_size + batch_size - 1) // batch_size), batch_size=None, batch_sampler=None)
return train, val
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def flatten_once(lst):
return sum(lst, [])
def main():
parser = argparse.ArgumentParser(description="Trains the network.")
parser.add_argument("datasets", action='append', nargs='+', help="Training datasets (.binpack). Interleaved at chunk level if multiple specified. Same data is used for training and validation if not validation data is specified.")
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument("--validation-data", type=str, action='append', nargs='+', dest='validation_datasets', help="Validation data to use for validation instead of the training data.")
parser.add_argument("--lambda", default=1.0, type=float, dest='lambda_', help="lambda=1.0 = train on evaluations, lambda=0.0 = train on game results, interpolates between (default=1.0).")
parser.add_argument("--start-lambda", default=None, type=float, dest='start_lambda', help="lambda to use at first epoch.")
parser.add_argument("--end-lambda", default=None, type=float, dest='end_lambda', help="lambda to use at last epoch.")
parser.add_argument("--gamma", default=0.992, type=float, dest='gamma', help="Multiplicative factor applied to the learning rate after every epoch.")
parser.add_argument("--lr", default=8.75e-4, type=float, dest='lr', help="Initial learning rate.")
parser.add_argument("--num-workers", default=1, type=int, dest='num_workers', help="Number of worker threads to use for data loading. Currently only works well for binpack.")
parser.add_argument("--batch-size", default=-1, type=int, dest='batch_size', help="Number of positions per batch / per iteration. Default on GPU = 8192 on CPU = 128.")
parser.add_argument("--threads", default=-1, type=int, dest='threads', help="Number of torch threads to use. Default automatic (cores) .")
parser.add_argument("--seed", default=42, type=int, dest='seed', help="torch seed to use.")
parser.add_argument("--smart-fen-skipping", action='store_true', dest='smart_fen_skipping_deprecated', help="If enabled positions that are bad training targets will be skipped during loading. Default: True, kept for backwards compatibility. This option is ignored")
parser.add_argument("--no-smart-fen-skipping", action='store_true', dest='no_smart_fen_skipping', help="If used then no smart fen skipping will be done. By default smart fen skipping is done.")
parser.add_argument("--no-wld-fen-skipping", action='store_true', dest='no_wld_fen_skipping', help="If used then no wld fen skipping will be done. By default wld fen skipping is done.")
parser.add_argument("--random-fen-skipping", default=3, type=int, dest='random_fen_skipping', help="skip fens randomly on average random_fen_skipping before using one.")
parser.add_argument("--resume-from-model", dest='resume_from_model', help="Initializes training using the weights from the given .pt model")
parser.add_argument("--network-save-period", type=int, default=20, dest='network_save_period', help="Number of epochs between network snapshots. None to disable.")
parser.add_argument("--save-last-network", type=str2bool, default=True, dest='save_last_network', help="Whether to always save the last produced network.")
parser.add_argument("--epoch-size", type=int, default=100000000, dest='epoch_size', help="Number of positions per epoch.")
parser.add_argument("--validation-size", type=int, default=1000000, dest='validation_size', help="Number of positions per validation step.")
parser.add_argument("--param-index", type=int, default=0, dest='param_index', help="Indexing for parameter scans.")
parser.add_argument("--early-fen-skipping", type=int, default=-1, dest='early_fen_skipping', help="Skip n plies from the start.")
features.add_argparse_args(parser)
args = parser.parse_args()
args.datasets = flatten_once(args.datasets)
if args.validation_datasets:
args.validation_datasets = flatten_once(args.validation_datasets)
else:
args.validation_datasets = []
for dataset in args.datasets:
if not os.path.exists(dataset):
raise Exception('{0} does not exist'.format(dataset))
for val_dataset in args.validation_datasets:
if not os.path.exists(val_dataset):
raise Exception('{0} does not exist'.format(val_dataset))
train_datasets = args.datasets
val_datasets = train_datasets
if len(args.validation_datasets) > 0:
val_datasets = args.validation_datasets
if (args.start_lambda is not None) != (args.end_lambda is not None):
raise Exception('Either both or none of start_lambda and end_lambda must be specified.')
feature_set = features.get_feature_set_from_name(args.features)
start_lambda = args.start_lambda or args.lambda_
end_lambda = args.end_lambda or args.lambda_
max_epoch = args.max_epochs or 800
if args.resume_from_model is None:
nnue = M.NNUE(
feature_set=feature_set,
start_lambda=start_lambda,
max_epoch=max_epoch,
end_lambda=end_lambda,
gamma=args.gamma,
lr=args.lr,
param_index=args.param_index
)
else:
nnue = torch.load(args.resume_from_model)
nnue.set_feature_set(feature_set)
nnue.start_lambda = start_lambda
nnue.end_lambda = end_lambda
nnue.max_epoch = max_epoch
# we can set the following here just like that because when resuming
# from .pt the optimizer is only created after the training is started
nnue.gamma = args.gamma
nnue.lr = args.lr
nnue.param_index=args.param_index
print("Feature set: {}".format(feature_set.name))
print("Num real features: {}".format(feature_set.num_real_features))
print("Num virtual features: {}".format(feature_set.num_virtual_features))
print("Num features: {}".format(feature_set.num_features))
print("Training with: {}".format(train_datasets))
print("Validating with: {}".format(val_datasets))
pl.seed_everything(args.seed)
print("Seed {}".format(args.seed))
batch_size = args.batch_size
if batch_size <= 0:
batch_size = 16384
print('Using batch size {}'.format(batch_size))
print('Smart fen skipping: {}'.format(not args.no_smart_fen_skipping))
print('WLD fen skipping: {}'.format(not args.no_wld_fen_skipping))
print('Random fen skipping: {}'.format(args.random_fen_skipping))
print('Skip early plies: {}'.format(args.early_fen_skipping))
print('Param index: {}'.format(args.param_index))
if args.threads > 0:
print('limiting torch to {} threads.'.format(args.threads))
t_set_num_threads(args.threads)
logdir = args.default_root_dir if args.default_root_dir else 'logs/'
print('Using log dir {}'.format(logdir), flush=True)
tb_logger = pl_loggers.TensorBoardLogger(logdir)
checkpoint_callback = pl.callbacks.ModelCheckpoint(save_last=args.save_last_network, every_n_epochs=args.network_save_period, save_top_k=-1)
trainer = pl.Trainer.from_argparse_args(args, callbacks=[checkpoint_callback], logger=tb_logger)
main_device = trainer.strategy.root_device if trainer.strategy.root_device.index is None else 'cuda:' + str(trainer.strategy.root_device.index)
nnue.to(device=main_device)
print('Using c++ data loader')
train, val = make_data_loaders(
train_datasets,
val_datasets,
feature_set,
args.num_workers,
batch_size,
not args.no_smart_fen_skipping,
args.random_fen_skipping,
not args.no_wld_fen_skipping,
args.early_fen_skipping,
args.param_index,
main_device,
args.epoch_size,
args.validation_size)
trainer.fit(nnue, train, val)
with open(os.path.join(logdir, 'training_finished'), 'w'):
pass
if __name__ == '__main__':
main()
if sys.platform == "win32":
os.system(f'wmic process where processid="{os.getpid()}" call terminate >nul')