diff --git a/main/.buildinfo b/main/.buildinfo index f082ca81..79f16e44 100644 --- a/main/.buildinfo +++ b/main/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 229747253a9e489cf3bfaacf595308c4 +config: 11e0cc96f0f7050cd7ccb6a72cf5ba69 tags: d77d1c0d9ca2f4c8421862c7c5a0d620 diff --git a/main/404.html b/main/404.html index c57a9b50..e238cd07 100644 --- a/main/404.html +++ b/main/404.html @@ -13,7 +13,7 @@ 404 - Page Not Found - Minari Documentation - + diff --git a/main/README/index.html b/main/README/index.html index e43e151e..2b324441 100644 --- a/main/README/index.html +++ b/main/README/index.html @@ -13,7 +13,7 @@ Minari documentation - Minari Documentation - + diff --git a/main/_downloads/315c4c52fb68082a731b192d944e2ede/tutorials_python.zip b/main/_downloads/315c4c52fb68082a731b192d944e2ede/tutorials_python.zip index 48cda658..f0e6986a 100644 Binary files a/main/_downloads/315c4c52fb68082a731b192d944e2ede/tutorials_python.zip and b/main/_downloads/315c4c52fb68082a731b192d944e2ede/tutorials_python.zip differ diff --git a/main/_downloads/a5659940aa3f8f568547d47752a43172/tutorials_jupyter.zip b/main/_downloads/a5659940aa3f8f568547d47752a43172/tutorials_jupyter.zip index 08e25a63..06d1e1bb 100644 Binary files a/main/_downloads/a5659940aa3f8f568547d47752a43172/tutorials_jupyter.zip and b/main/_downloads/a5659940aa3f8f568547d47752a43172/tutorials_jupyter.zip differ diff --git a/main/_downloads/d242f1ed6ffcff2255fb7296630d75ca/point_maze_dataset.py b/main/_downloads/d242f1ed6ffcff2255fb7296630d75ca/point_maze_dataset.py index a3f7f2d7..b72558c1 100644 --- a/main/_downloads/d242f1ed6ffcff2255fb7296630d75ca/point_maze_dataset.py +++ b/main/_downloads/d242f1ed6ffcff2255fb7296630d75ca/point_maze_dataset.py @@ -20,6 +20,7 @@ # Lets start by importing the required modules for this tutorial: import gymnasium as gym +import gymnasium_robotics # noqa: F401 import numpy as np from minari import DataCollector, StepDataCallback @@ -383,7 +384,7 @@ def __call__( obs, _ = collector_env.reset(seed=123) -waypoint_controller = WaypointController(maze=env.maze) +waypoint_controller = WaypointController(maze=env.unwrapped.maze) for n_step in range(int(total_steps)): action = waypoint_controller.compute_action(obs) diff --git a/main/_downloads/e07dbac5507bc55a4140a567f8213c9a/point_maze_dataset.ipynb b/main/_downloads/e07dbac5507bc55a4140a567f8213c9a/point_maze_dataset.ipynb index 6a296b2c..3091b316 100644 --- a/main/_downloads/e07dbac5507bc55a4140a567f8213c9a/point_maze_dataset.ipynb +++ b/main/_downloads/e07dbac5507bc55a4140a567f8213c9a/point_maze_dataset.ipynb @@ -33,7 +33,7 @@ }, "outputs": [], "source": [ - "import gymnasium as gym\nimport numpy as np\n\nfrom minari import DataCollector, StepDataCallback" + "import gymnasium as gym\nimport gymnasium_robotics # noqa: F401\nimport numpy as np\n\nfrom minari import DataCollector, StepDataCallback" ] }, { @@ -105,7 +105,7 @@ }, "outputs": [], "source": [ - "dataset_name = \"pointmaze/umaze-v0\"\ntotal_steps = 10_000\n\n# continuing task => the episode doesn't terminate or truncate when reaching a goal\n# it will generate a new target. For this reason we set the maximum episode steps to\n# the desired size of our Minari dataset (evade truncation due to time limit)\nenv = gym.make(\"PointMaze_Medium-v3\", continuing_task=True, max_episode_steps=total_steps)\n\n# Data collector wrapper to save temporary data while stepping. Characteristics:\n# * Custom StepDataCallback to add extra state information to 'infos' and divide dataset in different episodes by overridng\n# truncation value to True when target is reached\n# * Record the 'info' value of every step\ncollector_env = DataCollector(\n env, step_data_callback=PointMazeStepDataCallback, record_infos=True\n)\n\nobs, _ = collector_env.reset(seed=123)\n\nwaypoint_controller = WaypointController(maze=env.maze)\n\nfor n_step in range(int(total_steps)):\n action = waypoint_controller.compute_action(obs)\n # Add some noise to each step action\n action += np.random.randn(*action.shape) * 0.5\n action = np.clip(\n action, env.action_space.low, env.action_space.high, dtype=np.float32\n )\n\n obs, rew, terminated, truncated, info = collector_env.step(action)\n\ndataset = collector_env.create_dataset(\n dataset_id=dataset_name,\n algorithm_name=\"QIteration\",\n code_permalink=\"https://github.com/Farama-Foundation/Minari/blob/main/docs/tutorials/dataset_creation/point_maze_dataset.py\",\n author=\"Rodrigo Perez-Vicente\",\n author_email=\"rperezvicente@farama.org\",\n)" + "dataset_name = \"pointmaze/umaze-v0\"\ntotal_steps = 10_000\n\n# continuing task => the episode doesn't terminate or truncate when reaching a goal\n# it will generate a new target. For this reason we set the maximum episode steps to\n# the desired size of our Minari dataset (evade truncation due to time limit)\nenv = gym.make(\"PointMaze_Medium-v3\", continuing_task=True, max_episode_steps=total_steps)\n\n# Data collector wrapper to save temporary data while stepping. Characteristics:\n# * Custom StepDataCallback to add extra state information to 'infos' and divide dataset in different episodes by overridng\n# truncation value to True when target is reached\n# * Record the 'info' value of every step\ncollector_env = DataCollector(\n env, step_data_callback=PointMazeStepDataCallback, record_infos=True\n)\n\nobs, _ = collector_env.reset(seed=123)\n\nwaypoint_controller = WaypointController(maze=env.unwrapped.maze)\n\nfor n_step in range(int(total_steps)):\n action = waypoint_controller.compute_action(obs)\n # Add some noise to each step action\n action += np.random.randn(*action.shape) * 0.5\n action = np.clip(\n action, env.action_space.low, env.action_space.high, dtype=np.float32\n )\n\n obs, rew, terminated, truncated, info = collector_env.step(action)\n\ndataset = collector_env.create_dataset(\n dataset_id=dataset_name,\n algorithm_name=\"QIteration\",\n code_permalink=\"https://github.com/Farama-Foundation/Minari/blob/main/docs/tutorials/dataset_creation/point_maze_dataset.py\",\n author=\"Rodrigo Perez-Vicente\",\n author_email=\"rperezvicente@farama.org\",\n)" ] }, { diff --git a/main/_modules/index.html b/main/_modules/index.html index 01d1ae4d..cdcc316b 100644 --- a/main/_modules/index.html +++ b/main/_modules/index.html @@ -12,7 +12,7 @@ Overview: module code - Minari Documentation - + diff --git a/main/_modules/minari/data_collector/callbacks/episode_metadata/index.html b/main/_modules/minari/data_collector/callbacks/episode_metadata/index.html index 870bddf8..2cb26431 100644 --- a/main/_modules/minari/data_collector/callbacks/episode_metadata/index.html +++ b/main/_modules/minari/data_collector/callbacks/episode_metadata/index.html @@ -12,7 +12,7 @@ minari.data_collector.callbacks.episode_metadata - Minari Documentation - + @@ -802,12 +802,12 @@

Source code for minari.data_collector.callbacks.episode_metadata

-from typing import Dict
+from typing import Dict
 
 
 
[docs] -class EpisodeMetadataCallback: +class EpisodeMetadataCallback: """Callback to full episode after saving to hdf5 file as a group. This callback can be overridden to add extra metadata attributes or statistics to @@ -815,7 +815,7 @@

Source code for minari.data_collector.callbacks.episode_metadata

passed to the DataCollector wrapper to the `episode_metadata_callback` argument. """ - def __call__(self, episode: Dict) -> Dict: + def __call__(self, episode: Dict) -> Dict: """Callback method. Override this method to add custom attribute metadata to the episode group. diff --git a/main/_modules/minari/data_collector/callbacks/step_callback/index.html b/main/_modules/minari/data_collector/callbacks/step_callback/index.html index 659aebb1..233a2a9b 100644 --- a/main/_modules/minari/data_collector/callbacks/step_callback/index.html +++ b/main/_modules/minari/data_collector/callbacks/step_callback/index.html @@ -12,7 +12,7 @@ minari.data_collector.callbacks.step_callback - Minari Documentation - + @@ -802,23 +802,23 @@

Source code for minari.data_collector.callbacks.step_callback

-from typing import Any, Dict, Optional
+from typing import Any, Dict, Optional
 
-import gymnasium as gym
+import gymnasium as gym
 
-from minari.dataset.step_data import StepData
+from minari.dataset.step_data import StepData
 
 
 
[docs] -class StepDataCallback: +class StepDataCallback: """Callback to create step data dictionary from the return data of each Gymnasium environment step. This callback can be overridden to add extra environment information in each step or edit the observation, action, reward, termination, truncation, or info returns. """ - def __call__( + def __call__( self, env: gym.Env, obs: Any, diff --git a/main/_modules/minari/data_collector/data_collector/index.html b/main/_modules/minari/data_collector/data_collector/index.html index ef8a2432..c4a93095 100644 --- a/main/_modules/minari/data_collector/data_collector/index.html +++ b/main/_modules/minari/data_collector/data_collector/index.html @@ -12,7 +12,7 @@ minari.data_collector.data_collector - Minari Documentation - + @@ -802,27 +802,27 @@

Source code for minari.data_collector.data_collector

-from __future__ import annotations
+from __future__ import annotations
 
-import copy
-import os
-import secrets
-import shutil
-import tempfile
-import warnings
-from typing import Any, Callable, Dict, Optional, SupportsFloat, Type
+import copy
+import os
+import secrets
+import shutil
+import tempfile
+import warnings
+from typing import Any, Callable, Dict, Optional, SupportsFloat, Type
 
-import gymnasium as gym
-import numpy as np
-from gymnasium.core import ActType, ObsType
-from gymnasium.envs.registration import EnvSpec
+import gymnasium as gym
+import numpy as np
+from gymnasium.core import ActType, ObsType
+from gymnasium.envs.registration import EnvSpec
 
-from minari.data_collector.callbacks import EpisodeMetadataCallback, StepDataCallback
-from minari.data_collector.episode_buffer import EpisodeBuffer
-from minari.dataset.minari_dataset import MinariDataset, parse_dataset_id
-from minari.dataset.minari_storage import MinariStorage
-from minari.namespace import create_namespace, list_local_namespaces
-from minari.utils import _generate_dataset_metadata, _generate_dataset_path
+from minari.data_collector.callbacks import EpisodeMetadataCallback, StepDataCallback
+from minari.data_collector.episode_buffer import EpisodeBuffer
+from minari.dataset.minari_dataset import MinariDataset, parse_dataset_id
+from minari.dataset.minari_storage import MinariStorage
+from minari.namespace import create_namespace, list_local_namespaces
+from minari.utils import _generate_dataset_metadata, _generate_dataset_path
 
 
 # H5Py supports ints up to uint64
@@ -831,7 +831,7 @@ 

Source code for minari.data_collector.data_collector

[docs] -class DataCollector(gym.Wrapper): +class DataCollector(gym.Wrapper): r"""Gymnasium environment wrapper that collects step data. This wrapper is meant to work as a temporary buffer of the environment data before creating a Minari dataset. The creation of the buffers @@ -866,7 +866,7 @@

Source code for minari.data_collector.data_collector

""" - def __init__( + def __init__( self, env: gym.Env, step_data_callback: Type[StepDataCallback] = StepDataCallback, @@ -914,7 +914,7 @@

Source code for minari.data_collector.data_collector

self._episode_id = 0 self._reset_storage() - def _reset_storage(self): + def _reset_storage(self): self._episode_id = 0 self._tmp_dir = tempfile.TemporaryDirectory(dir=self.datasets_path) data_format_kwarg = ( @@ -928,7 +928,7 @@

Source code for minari.data_collector.data_collector

**data_format_kwarg, ) - def step( + def step( self, action: ActType ) -> tuple[ObsType, SupportsFloat, bool, bool, dict[str, Any]]: """Gymnasium step method.""" @@ -971,7 +971,7 @@

Source code for minari.data_collector.data_collector

return obs, rew, terminated, truncated, info - def reset( + def reset( self, *, seed: int | None = None, @@ -1016,7 +1016,7 @@

Source code for minari.data_collector.data_collector

) return obs, info - def add_to_dataset(self, dataset: MinariDataset): + def add_to_dataset(self, dataset: MinariDataset): """Add extra data to Minari dataset from collector environment buffers (DataCollector). Args: @@ -1032,7 +1032,7 @@

Source code for minari.data_collector.data_collector

self._reset_storage() - def create_dataset( + def create_dataset( self, dataset_id: str, eval_env: Optional[str | gym.Env | EnvSpec] = None, @@ -1097,7 +1097,7 @@

Source code for minari.data_collector.data_collector

self._save_to_disk(dataset_path, metadata) return MinariDataset(dataset_path) - def _flush_to_storage(self): + def _flush_to_storage(self): if self._buffer is not None and len(self._buffer) > 0: if not self._buffer.terminations[-1]: self._buffer.truncations[-1] = True @@ -1105,7 +1105,7 @@

Source code for minari.data_collector.data_collector

self._episode_id += 1 self._buffer = None - def _save_to_disk( + def _save_to_disk( self, path: str | os.PathLike, dataset_metadata: Dict[str, Any] = {} ): """Save all in-memory buffer data and move temporary files to a permanent location in disk. @@ -1139,7 +1139,7 @@

Source code for minari.data_collector.data_collector

self._reset_storage() - def close(self): + def close(self): """Close the DataCollector. Clear buffer and close temporary directory. @@ -1150,7 +1150,7 @@

Source code for minari.data_collector.data_collector

def _check_infos_same_shape(info_1: dict, info_2: dict): +def _check_infos_same_shape(info_1: dict, info_2: dict): if info_1.keys() != info_2.keys(): return False for key in info_1.keys(): diff --git a/main/_modules/minari/data_collector/episode_buffer/index.html b/main/_modules/minari/data_collector/episode_buffer/index.html index 9823a4a7..243d1bf6 100644 --- a/main/_modules/minari/data_collector/episode_buffer/index.html +++ b/main/_modules/minari/data_collector/episode_buffer/index.html @@ -12,7 +12,7 @@ minari.data_collector.episode_buffer - Minari Documentation - + @@ -802,18 +802,18 @@

Source code for minari.data_collector.episode_buffer

-from __future__ import annotations
+from __future__ import annotations
 
-from dataclasses import dataclass, field
-from typing import Optional, Union
+from dataclasses import dataclass, field
+from typing import Optional, Union
 
-from minari.dataset.step_data import StepData
+from minari.dataset.step_data import StepData
 
 
 
[docs] @dataclass(frozen=True) -class EpisodeBuffer: +class EpisodeBuffer: """Contains the data of a single episode.""" id: Optional[int] = None @@ -826,7 +826,7 @@

Source code for minari.data_collector.episode_buffer

truncations: list = field(default_factory=list) infos: Optional[dict] = None - def add_step_data(self, step_data: StepData) -> EpisodeBuffer: + def add_step_data(self, step_data: StepData) -> EpisodeBuffer: """Add step data dictionary to episode buffer. Args: @@ -836,13 +836,13 @@

Source code for minari.data_collector.episode_buffer

EpisodeBuffer: episode buffer with appended data """ try: - import jax.tree_util as jtu + import jax.tree_util as jtu except ImportError: raise ImportError( 'jax is not installed. Please install it using `pip install "minari[create]"`' ) - def _append(data, buffer): + def _append(data, buffer): if isinstance(buffer, list): buffer.append(data) return buffer @@ -881,7 +881,7 @@

Source code for minari.data_collector.episode_buffer

infos=infos, ) - def __len__(self) -> int: + def __len__(self) -> int: """Buffer length.""" return len(self.rewards)
diff --git a/main/_modules/minari/dataset/episode_data/index.html b/main/_modules/minari/dataset/episode_data/index.html index 2ae00c7f..d55647a5 100644 --- a/main/_modules/minari/dataset/episode_data/index.html +++ b/main/_modules/minari/dataset/episode_data/index.html @@ -12,7 +12,7 @@ minari.dataset.episode_data - Minari Documentation - + @@ -802,16 +802,16 @@

Source code for minari.dataset.episode_data

-from dataclasses import dataclass
-from typing import Any
+from dataclasses import dataclass
+from typing import Any
 
-import numpy as np
+import numpy as np
 
 
 
[docs] @dataclass(frozen=True) -class EpisodeData: +class EpisodeData: """Contains the datasets data for a single episode.""" id: int @@ -822,10 +822,10 @@

Source code for minari.dataset.episode_data

     truncations: np.ndarray
     infos: dict
 
-    def __len__(self) -> int:
+    def __len__(self) -> int:
         return len(self.rewards)
 
-    def __repr__(self) -> str:
+    def __repr__(self) -> str:
         return (
             "EpisodeData("
             f"id={self.id}, "
@@ -840,7 +840,7 @@ 

Source code for minari.dataset.episode_data

         )
 
     @staticmethod
-    def _repr_space_values(value):
+    def _repr_space_values(value):
         if isinstance(value, np.ndarray):
             return f"ndarray of shape {value.shape} and dtype {value.dtype}"
         elif isinstance(value, dict):
diff --git a/main/_modules/minari/dataset/minari_dataset/index.html b/main/_modules/minari/dataset/minari_dataset/index.html
index 7d969b9a..85a63aee 100644
--- a/main/_modules/minari/dataset/minari_dataset/index.html
+++ b/main/_modules/minari/dataset/minari_dataset/index.html
@@ -12,7 +12,7 @@
 
     
         minari.dataset.minari_dataset - Minari Documentation
-      
+      
     
     
     
@@ -802,26 +802,26 @@
           

Source code for minari.dataset.minari_dataset

-from __future__ import annotations
+from __future__ import annotations
 
-import importlib.metadata
-import logging
-import os
-import re
-import warnings
-from dataclasses import dataclass, field
-from typing import Callable, Iterable, Iterator, List
+import importlib.metadata
+import logging
+import os
+import re
+import warnings
+from dataclasses import dataclass, field
+from typing import Callable, Iterable, Iterator, List
 
-import gymnasium as gym
-import numpy as np
-import numpy.typing as npt
-from gymnasium.envs.registration import EnvSpec
-from packaging.requirements import InvalidRequirement, Requirement
-from packaging.version import Version
+import gymnasium as gym
+import numpy as np
+import numpy.typing as npt
+from gymnasium.envs.registration import EnvSpec
+from packaging.requirements import InvalidRequirement, Requirement
+from packaging.version import Version
 
-from minari.data_collector.episode_buffer import EpisodeBuffer
-from minari.dataset.episode_data import EpisodeData
-from minari.dataset.minari_storage import MinariStorage, PathLike
+from minari.data_collector.episode_buffer import EpisodeBuffer
+from minari.dataset.episode_data import EpisodeData
+from minari.dataset.minari_storage import MinariStorage, PathLike
 
 
 VERSION_RE = r"(?:-v(?P<version>\d+))"
@@ -830,7 +830,7 @@ 

Source code for minari.dataset.minari_dataset

DATASET_ID_RE = re.compile(rf"^{NAMESPACE_RE}?{DATASET_NAME_RE}{VERSION_RE}?$") -def parse_dataset_id(dataset_id: str) -> tuple[str | None, str, int]: +def parse_dataset_id(dataset_id: str) -> tuple[str | None, str, int]: """Parse dataset ID string format - ``(namespace/)dataset_name(-v[version])``. Args: @@ -855,7 +855,7 @@

Source code for minari.dataset.minari_dataset

return namespace, dataset_name, version -def gen_dataset_id( +def gen_dataset_id( namespace: str | None, dataset_name: str, version: int | None = None, @@ -878,7 +878,7 @@

Source code for minari.dataset.minari_dataset

@dataclass -class MinariDatasetSpec: +class MinariDatasetSpec: env_spec: EnvSpec | None total_episodes: int total_steps: int @@ -894,7 +894,7 @@

Source code for minari.dataset.minari_dataset

dataset_name: str = field(init=False) version: int | None = field(init=False) - def __post_init__(self): + def __post_init__(self): """Calls after the spec is created to extract the environment name, dataset name and version from the dataset id.""" ( self.namespace, @@ -905,10 +905,10 @@

Source code for minari.dataset.minari_dataset

[docs] -class MinariDataset: +class MinariDataset: """Main Minari dataset class to sample data and get metadata information from a dataset.""" - def __init__( + def __init__( self, data: MinariStorage | PathLike, episode_indices: npt.NDArray[np.int_] | None = None, @@ -963,7 +963,7 @@

Source code for minari.dataset.minari_dataset

minari_version = metadata["minari_version"] assert isinstance(minari_version, str) - from minari import __version__, supported_dataset_versions + from minari import __version__, supported_dataset_versions if minari_version not in supported_dataset_versions: raise ValueError( @@ -981,7 +981,7 @@

Source code for minari.dataset.minari_dataset

self._generator = np.random.default_rng() - def recover_environment(self, eval_env: bool = False, **kwargs) -> gym.Env: + def recover_environment(self, eval_env: bool = False, **kwargs) -> gym.Env: """Recover the Gymnasium environment used to create the dataset. Args: @@ -1024,11 +1024,11 @@

Source code for minari.dataset.minari_dataset

return gym.make(self.env_spec, **kwargs) - def set_seed(self, seed: int): + def set_seed(self, seed: int): """Set seed for random episode sampling generator.""" self._generator = np.random.default_rng(seed) - def filter_episodes( + def filter_episodes( self, condition: Callable[[EpisodeData], bool] ) -> MinariDataset: """Filter the dataset episodes with a condition. @@ -1045,7 +1045,7 @@

Source code for minari.dataset.minari_dataset

condition (Callable[[EpisodeData], bool]): function that gets in input an EpisodeData object and returns True if certain condition is met. """ - def dict_to_episode_data_condition(episode: dict) -> bool: + def dict_to_episode_data_condition(episode: dict) -> bool: return condition(EpisodeData(**episode)) mask = self.storage.apply( @@ -1055,7 +1055,7 @@

Source code for minari.dataset.minari_dataset

filtered_indices = self.episode_indices[list(mask)] return MinariDataset(self.storage, episode_indices=filtered_indices) - def sample_episodes(self, n_episodes: int) -> Iterable[EpisodeData]: + def sample_episodes(self, n_episodes: int) -> Iterable[EpisodeData]: """Sample n number of episodes from the dataset. Args: @@ -1067,7 +1067,7 @@

Source code for minari.dataset.minari_dataset

episodes = self.storage.get_episodes(indices) return list(map(lambda data: EpisodeData(**data), episodes)) - def iterate_episodes( + def iterate_episodes( self, episode_indices: Iterable[int] | None = None ) -> Iterator[EpisodeData]: """Iterate over episodes from the dataset. @@ -1084,7 +1084,7 @@

Source code for minari.dataset.minari_dataset

episodes_data = self.storage.get_episodes(episode_indices) return map(lambda data: EpisodeData(**data), episodes_data) - def update_dataset_from_buffer(self, buffer: List[EpisodeBuffer]): + def update_dataset_from_buffer(self, buffer: List[EpisodeBuffer]): """Additional data can be added to the Minari Dataset from a list of episode dictionary buffers. Args: @@ -1096,23 +1096,23 @@

Source code for minari.dataset.minari_dataset

self.episode_indices, first_id + np.arange(len(buffer)) ) - def __iter__(self): + def __iter__(self): return self.iterate_episodes() - def __getitem__(self, idx: int) -> EpisodeData: + def __getitem__(self, idx: int) -> EpisodeData: episode = self.iterate_episodes([self.episode_indices[idx]]) return next(episode) - def __len__(self) -> int: + def __len__(self) -> int: return self.total_episodes @property - def total_episodes(self) -> int: + def total_episodes(self) -> int: """Total number of episodes in the Minari dataset.""" return len(self.episode_indices) @property - def total_steps(self) -> int: + def total_steps(self) -> int: """Total episodes steps in the Minari dataset.""" if self._total_steps is None: self._total_steps = 0 @@ -1122,32 +1122,32 @@

Source code for minari.dataset.minari_dataset

return int(self._total_steps) @property - def episode_indices(self) -> npt.NDArray[np.int_]: + def episode_indices(self) -> npt.NDArray[np.int_]: """Indices of the available episodes to sample within the Minari dataset.""" return self._episode_indices @episode_indices.setter - def episode_indices(self, new_value: npt.NDArray[np.int_]): + def episode_indices(self, new_value: npt.NDArray[np.int_]): self._total_steps = None # invalidate cache self._episode_indices = new_value @property - def observation_space(self): + def observation_space(self): """Original observation space of the environment before flatteining (if this is the case).""" return self._observation_space @property - def action_space(self): + def action_space(self): """Original action space of the environment before flatteining (if this is the case).""" return self._action_space @property - def env_spec(self): + def env_spec(self): """Envspec of the environment that has generated the dataset.""" return self._env_spec @property - def combined_datasets(self) -> List[str]: + def combined_datasets(self) -> List[str]: """If this Minari dataset is a combination of other subdatasets, return a list with the subdataset names.""" if self._combined_datasets is None: return [] @@ -1155,22 +1155,22 @@

Source code for minari.dataset.minari_dataset

return self._combined_datasets @property - def id(self) -> str: + def id(self) -> str: """Name of the Minari dataset.""" return self._dataset_id @property - def minari_version(self) -> str: + def minari_version(self) -> str: """Version of Minari the dataset is compatible with.""" return self._minari_version @property - def storage(self) -> MinariStorage: + def storage(self) -> MinariStorage: """Minari storage managing access to disk.""" return self._data @property - def spec(self) -> MinariDatasetSpec: + def spec(self) -> MinariDatasetSpec: """Minari dataset specifier.""" return MinariDatasetSpec( env_spec=self.env_spec, diff --git a/main/_modules/minari/dataset/minari_storage/index.html b/main/_modules/minari/dataset/minari_storage/index.html index 2370ad73..fcef5e34 100644 --- a/main/_modules/minari/dataset/minari_storage/index.html +++ b/main/_modules/minari/dataset/minari_storage/index.html @@ -12,7 +12,7 @@ minari.dataset.minari_storage - Minari Documentation - + @@ -802,21 +802,21 @@

Source code for minari.dataset.minari_storage

-from __future__ import annotations
+from __future__ import annotations
 
-import json
-import os
-import pathlib
-import warnings
-from abc import ABC, abstractmethod
-from typing import Any, Callable, Dict, Iterable, Optional, Union
+import json
+import os
+import pathlib
+import warnings
+from abc import ABC, abstractmethod
+from typing import Any, Callable, Dict, Iterable, Optional, Union
 
-import gymnasium as gym
-import numpy as np
-from gymnasium.envs.registration import EnvSpec
+import gymnasium as gym
+import numpy as np
+from gymnasium.envs.registration import EnvSpec
 
-from minari.data_collector.episode_buffer import EpisodeBuffer
-from minari.serialization import deserialize_space, serialize_space
+from minari.data_collector.episode_buffer import EpisodeBuffer
+from minari.serialization import deserialize_space, serialize_space
 
 
 PathLike = Union[str, os.PathLike]
@@ -825,12 +825,12 @@ 

Source code for minari.dataset.minari_storage

[docs] -class MinariStorage(ABC): +class MinariStorage(ABC): """Class that handles disk access to the data.""" FORMAT: str - def __init__( + def __init__( self, data_path: pathlib.Path, observation_space: gym.Space, @@ -841,7 +841,7 @@

Source code for minari.dataset.minari_storage

self._action_space = action_space @classmethod - def read_raw_metadata(cls, data_path: PathLike) -> Dict[str, Any]: + def read_raw_metadata(cls, data_path: PathLike) -> Dict[str, Any]: """Read the raw metadata from a path. Args: @@ -864,7 +864,7 @@

Source code for minari.dataset.minari_storage

return metadata @classmethod - def read(cls, data_path: PathLike) -> MinariStorage: + def read(cls, data_path: PathLike) -> MinariStorage: """Create a MinariStorage to read data from a path. Args: @@ -904,7 +904,7 @@

Source code for minari.dataset.minari_storage

if action_space is None: action_space = env.action_space - from minari.dataset._storages import get_minari_storage # avoid circular import + from minari.dataset._storages import get_minari_storage # avoid circular import return get_minari_storage(metadata["data_format"])( pathlib.Path(data_path), @@ -913,7 +913,7 @@

Source code for minari.dataset.minari_storage

) @classmethod - def new( + def new( cls, data_path: PathLike, observation_space: Optional[gym.Space] = None, @@ -941,7 +941,7 @@

Source code for minari.dataset.minari_storage

raise ValueError( "Since env_spec is not specified, you need to specify both action space and observation space" ) - from minari.dataset._storages import ( # avoid circular import + from minari.dataset._storages import ( # avoid circular import get_minari_storage, get_storage_keys, ) @@ -991,7 +991,7 @@

Source code for minari.dataset.minari_storage

@classmethod @abstractmethod - def _create( + def _create( cls, data_path: pathlib.Path, observation_space: gym.Space, @@ -999,7 +999,7 @@

Source code for minari.dataset.minari_storage

) -> MinariStorage: ... @property - def metadata(self) -> Dict[str, Any]: + def metadata(self) -> Dict[str, Any]: """Metadata of the dataset.""" metadata = MinariStorage.read_raw_metadata(self.data_path) @@ -1011,7 +1011,7 @@

Source code for minari.dataset.minari_storage

metadata["author_email"] = set(metadata["author_email"]) return metadata - def update_metadata(self, metadata: Dict): + def update_metadata(self, metadata: Dict): """Update the metadata adding/modifying some keys. Args: @@ -1050,7 +1050,7 @@

Source code for minari.dataset.minari_storage

json.dump(saved_metadata, file, default=_json_converter) @abstractmethod - def update_episode_metadata( + def update_episode_metadata( self, metadatas: Iterable[Dict], episode_indices: Optional[Iterable] = None ): """Update the metadata of episodes. @@ -1063,7 +1063,7 @@

Source code for minari.dataset.minari_storage

... @abstractmethod - def get_episode_metadata(self, episode_indices: Iterable[int]) -> Iterable[Dict]: + def get_episode_metadata(self, episode_indices: Iterable[int]) -> Iterable[Dict]: """Get the metadata of episodes. Args: @@ -1074,7 +1074,7 @@

Source code for minari.dataset.minari_storage

""" ... - def apply( + def apply( self, function: Callable[[dict], Any], episode_indices: Optional[Iterable] = None, @@ -1095,7 +1095,7 @@

Source code for minari.dataset.minari_storage

return map(function, ep_dicts) @abstractmethod - def get_episodes(self, episode_indices: Iterable[int]) -> Iterable[dict]: + def get_episodes(self, episode_indices: Iterable[int]) -> Iterable[dict]: """Get a list of episodes. Args: @@ -1107,7 +1107,7 @@

Source code for minari.dataset.minari_storage

... @abstractmethod - def update_episodes(self, episodes: Iterable[EpisodeBuffer]): + def update_episodes(self, episodes: Iterable[EpisodeBuffer]): """Update episodes in the storage from a list of episode buffer. Args: @@ -1117,7 +1117,7 @@

Source code for minari.dataset.minari_storage

""" ... - def update_from_storage(self, storage: MinariStorage): + def update_from_storage(self, storage: MinariStorage): """Update the dataset using another MinariStorage. Args: @@ -1149,7 +1149,7 @@

Source code for minari.dataset.minari_storage

} ) - def get_size(self) -> float: + def get_size(self) -> float: """Returns the dataset size in MB. Returns: @@ -1164,33 +1164,33 @@

Source code for minari.dataset.minari_storage

return np.round(datasize, 1) @property - def data_path(self) -> pathlib.Path: + def data_path(self) -> pathlib.Path: """Full path to the dataset.""" return self._data_path @property - def total_episodes(self) -> int: + def total_episodes(self) -> int: """Total episodes in the dataset.""" return self.metadata["total_episodes"] @property - def total_steps(self) -> int: + def total_steps(self) -> int: """Total steps in the dataset.""" return self.metadata["total_steps"] @property - def observation_space(self) -> gym.Space: + def observation_space(self) -> gym.Space: """Observation Space of the dataset.""" return self._observation_space @property - def action_space(self) -> gym.Space: + def action_space(self) -> gym.Space: """Action space of the dataset.""" return self._action_space
-def _json_converter(obj: Any): +def _json_converter(obj: Any): if isinstance(obj, set): return list(obj) raise TypeError(f"Object of type {type(obj)} is not JSON serializable") diff --git a/main/_modules/minari/dataset/step_data/index.html b/main/_modules/minari/dataset/step_data/index.html index 69094f5d..17edaefe 100644 --- a/main/_modules/minari/dataset/step_data/index.html +++ b/main/_modules/minari/dataset/step_data/index.html @@ -12,7 +12,7 @@ minari.dataset.step_data - Minari Documentation - + @@ -802,12 +802,12 @@

Source code for minari.dataset.step_data

-from typing import Any, Dict, Optional, SupportsFloat, TypedDict
+from typing import Any, Dict, Optional, SupportsFloat, TypedDict
 
 
 
[docs] -class StepData(TypedDict): +class StepData(TypedDict): """Object containing data of a single environment step.""" observation: Any diff --git a/main/_modules/minari/namespace/index.html b/main/_modules/minari/namespace/index.html index 71139ffb..6d1ffca4 100644 --- a/main/_modules/minari/namespace/index.html +++ b/main/_modules/minari/namespace/index.html @@ -12,7 +12,7 @@ minari.namespace - Minari Documentation - + @@ -802,17 +802,17 @@

Source code for minari.namespace

-import copy
-import json
-import os
-import re
-import warnings
-from pathlib import Path
-from typing import Any, Dict, Iterable, List, Optional
+import copy
+import json
+import os
+import re
+import warnings
+from pathlib import Path
+from typing import Any, Dict, Iterable, List, Optional
 
-from minari.storage import get_dataset_path
-from minari.storage.hosting import get_cloud_storage
-from minari.storage.local import list_non_hidden_dirs
+from minari.storage import get_dataset_path
+from minari.storage.hosting import get_cloud_storage
+from minari.storage.local import list_non_hidden_dirs
 
 
 NAMESPACE_REGEX = re.compile(r"[-_\w][-_\w/]*[-_\w]+")
@@ -821,7 +821,7 @@ 

Source code for minari.namespace

 
 
[docs] -def create_namespace( +def create_namespace( namespace: str, description: Optional[str] = None, **kwargs, @@ -863,7 +863,7 @@

Source code for minari.namespace

 
 
 
-def update_namespace_metadata(
+def update_namespace_metadata(
     namespace: str,
     description: Optional[str] = None,
     **kwargs,
@@ -892,7 +892,7 @@ 

Source code for minari.namespace

 
 
[docs] -def get_namespace_metadata(namespace: str) -> Dict[str, Any]: +def get_namespace_metadata(namespace: str) -> Dict[str, Any]: """Load local namespace metadata. Note: The namespace API is an experimental feature and may change in future releases. @@ -919,7 +919,7 @@

Source code for minari.namespace

 
 
[docs] -def delete_namespace(namespace: str) -> None: +def delete_namespace(namespace: str) -> None: """Delete local namespace. Only empty namespaces can be deleted. Note: The namespace API is an experimental feature and may change in future releases. @@ -952,7 +952,7 @@

Source code for minari.namespace

 
 
[docs] -def list_local_namespaces() -> List[str]: +def list_local_namespaces() -> List[str]: """Get the names of the namespaces in the local database. Note: The namespace API is an experimental feature and may change in future releases. @@ -963,7 +963,7 @@

Source code for minari.namespace

     datasets_path = get_dataset_path()
     namespaces = []
 
-    def recurse_directories(base_path: Path, namespace):
+    def recurse_directories(base_path: Path, namespace):
         parent_dir = base_path.joinpath(namespace)
         for dir_name in list_non_hidden_dirs(parent_dir):
             dir_path = os.path.join(parent_dir, dir_name)
@@ -985,7 +985,7 @@ 

Source code for minari.namespace

 
 
[docs] -def list_remote_namespaces() -> List[str]: +def list_remote_namespaces() -> List[str]: """Get the names of the namespaces in the remote server. Note: The namespace API is an experimental feature and may change in future releases. @@ -1001,7 +1001,7 @@

Source code for minari.namespace

 
 
[docs] -def download_namespace_metadata(namespace: str, overwrite: bool = False) -> None: +def download_namespace_metadata(namespace: str, overwrite: bool = False) -> None: """Download remote namespace to local database. Note: The namespace API is an experimental feature and may change in future releases. @@ -1032,7 +1032,7 @@

Source code for minari.namespace

 
 
[docs] -def upload_namespace(namespace: str, token: str) -> None: +def upload_namespace(namespace: str, token: str) -> None: """Upload a local namespace to the remote server. If you would like to upload a namespace please first get in touch with the Farama team at contact@farama.org. @@ -1067,7 +1067,7 @@

Source code for minari.namespace

 
 
 
-def namespace_hierarchy(namespace: Optional[str]) -> Iterable[str]:
+def namespace_hierarchy(namespace: Optional[str]) -> Iterable[str]:
     """Get all parent namespaces of a given namespace.
 
     Args:
@@ -1084,7 +1084,7 @@ 

Source code for minari.namespace

         yield os.path.join(*namespace_parts[: i + 1])
 
 
-def validate_namespace(namespace: Optional[str]) -> None:
+def validate_namespace(namespace: Optional[str]) -> None:
     """Validate a namespace identifier.
 
     Note: The namespace API is an experimental feature and may change in future releases.
diff --git a/main/_modules/minari/storage/hosting/index.html b/main/_modules/minari/storage/hosting/index.html
index 4ee21332..c95d520e 100644
--- a/main/_modules/minari/storage/hosting/index.html
+++ b/main/_modules/minari/storage/hosting/index.html
@@ -12,7 +12,7 @@
 
     
         minari.storage.hosting - Minari Documentation
-      
+      
     
     
     
@@ -802,27 +802,27 @@
           

Source code for minari.storage.hosting

-from __future__ import annotations
+from __future__ import annotations
 
-import importlib.metadata
-import os
-import warnings
-from collections import defaultdict
-from concurrent.futures import ThreadPoolExecutor
-from typing import Dict, Optional
+import importlib.metadata
+import os
+import warnings
+from collections import defaultdict
+from concurrent.futures import ThreadPoolExecutor
+from typing import Dict, Optional
 
-from minari.dataset.minari_dataset import gen_dataset_id, parse_dataset_id
-from minari.dataset.minari_storage import MinariStorage
-from minari.storage.datasets_root_dir import get_dataset_path
-from minari.storage.local import load_dataset
-from minari.storage.remotes import get_cloud_storage
+from minari.dataset.minari_dataset import gen_dataset_id, parse_dataset_id
+from minari.dataset.minari_storage import MinariStorage
+from minari.storage.datasets_root_dir import get_dataset_path
+from minari.storage.local import load_dataset
+from minari.storage.remotes import get_cloud_storage
 
 
 # Use importlib due to circular import when: "from minari import __version__"
 __version__ = importlib.metadata.version("minari")
 
 
-def upload_dataset(dataset_id: str, token: str):
+def upload_dataset(dataset_id: str, token: str):
     """Upload a Minari dataset to the remote Farama server.
 
     If you would like to upload a dataset please first get in touch with the Farama team at contact@farama.org.
@@ -833,7 +833,7 @@ 

Source code for minari.storage.hosting

             Notice, that for GCP, this is the path to the service account key file, while for Hugging Face, this is the API token.
     """
     # Avoid circular import
-    from minari.namespace import list_remote_namespaces, upload_namespace
+    from minari.namespace import list_remote_namespaces, upload_namespace
 
     remote_datasets = list_remote_datasets()
     if dataset_id in remote_datasets.keys():
@@ -861,7 +861,7 @@ 

Source code for minari.storage.hosting

 
 
[docs] -def download_dataset(dataset_id: str, force_download: bool = False): +def download_dataset(dataset_id: str, force_download: bool = False): """Download dataset from remote Farama server. An error will be raised if the dataset version is not compatible with the local installed version of Minari. @@ -872,8 +872,8 @@

Source code for minari.storage.hosting

         dataset_id (str): name id of the Minari dataset. It can also be a complete remote path, e.g. `hf://farama-minari/D4RL/door/human-v2`.
         force_download (bool): boolean flag for force downloading the dataset. Default Value = False
     """
-    from minari import supported_dataset_versions
-    from minari.namespace import (
+    from minari import supported_dataset_versions
+    from minari.namespace import (
         download_namespace_metadata,
         list_local_namespaces,
         namespace_hierarchy,
@@ -993,7 +993,7 @@ 

Source code for minari.storage.hosting

 
 
[docs] -def list_remote_datasets( +def list_remote_datasets( remote_path: Optional[str] = None, prefix: Optional[str] = None, latest_version: bool = False, @@ -1011,7 +1011,7 @@

Source code for minari.storage.hosting

     Returns:
        Dict[str, Dict[str, str]]: keys the names of the Minari datasets and values the metadata
     """
-    from minari import supported_dataset_versions
+    from minari import supported_dataset_versions
 
     cloud_storage = get_cloud_storage(remote_path=remote_path)
     dataset_ids = cloud_storage.list_datasets(prefix=prefix)
diff --git a/main/_modules/minari/storage/local/index.html b/main/_modules/minari/storage/local/index.html
index 428d205a..54f19b02 100644
--- a/main/_modules/minari/storage/local/index.html
+++ b/main/_modules/minari/storage/local/index.html
@@ -12,7 +12,7 @@
 
     
         minari.storage.local - Minari Documentation
-      
+      
     
     
     
@@ -802,35 +802,35 @@
           

Source code for minari.storage.local

-import importlib.metadata
-import os
-import pathlib
-import shutil
-import warnings
-from typing import Dict, Iterable, Optional, Tuple, Union
-
-from minari.dataset.minari_dataset import (
+import importlib.metadata
+import os
+import pathlib
+import shutil
+import warnings
+from typing import Dict, Iterable, Optional, Tuple, Union
+
+from minari.dataset.minari_dataset import (
     MinariDataset,
     gen_dataset_id,
     parse_dataset_id,
 )
-from minari.dataset.minari_storage import MinariStorage
-from minari.storage import hosting
-from minari.storage.datasets_root_dir import get_dataset_path
+from minari.dataset.minari_storage import MinariStorage
+from minari.storage import hosting
+from minari.storage.datasets_root_dir import get_dataset_path
 
 
 # Use importlib due to circular import when: "from minari import __version__"
 __version__ = importlib.metadata.version("minari")
 
 
-def list_non_hidden_dirs(path: pathlib.Path) -> Iterable[str]:
+def list_non_hidden_dirs(path: pathlib.Path) -> Iterable[str]:
     """List all non-hidden subdirectories."""
     for d in path.iterdir():
         if d.is_dir() and (not d.name.startswith(".")):
             yield d.name
 
 
-def dataset_id_sort_key(dataset_id: str) -> Tuple[str, str, int]:
+def dataset_id_sort_key(dataset_id: str) -> Tuple[str, str, int]:
     """Key for sorting dataset ids first by namespace, and then alphabetically."""
     namespace, dataset_name, version = parse_dataset_id(dataset_id)
     namespace = "" if namespace is None else namespace
@@ -839,7 +839,7 @@ 

Source code for minari.storage.local

 
 
[docs] -def load_dataset(dataset_id: str, download: bool = False): +def load_dataset(dataset_id: str, download: bool = False): """Retrieve Minari dataset from local database. Args: @@ -866,7 +866,7 @@

Source code for minari.storage.local

 
 
[docs] -def list_local_datasets( +def list_local_datasets( latest_version: bool = False, compatible_minari_version: bool = False, prefix: Optional[str] = None, @@ -880,12 +880,12 @@

Source code for minari.storage.local

     Returns:
        Dict[str, Dict[str, str]]: keys the names of the Minari datasets and values the metadata
     """
-    from minari import supported_dataset_versions
+    from minari import supported_dataset_versions
 
     datasets_path = get_dataset_path()
     dataset_ids = []
 
-    def recurse_directories(base_path: pathlib.Path, namespace):
+    def recurse_directories(base_path: pathlib.Path, namespace):
         parent_dir = base_path.joinpath(namespace)
         if not parent_dir.exists():
             return
@@ -945,7 +945,7 @@ 

Source code for minari.storage.local

 
 
[docs] -def delete_dataset(dataset_id: str): +def delete_dataset(dataset_id: str): """Delete a Minari dataset from the local Minari database. Args: diff --git a/main/_modules/minari/utils/index.html b/main/_modules/minari/utils/index.html index 87d3d909..ba84c5d8 100644 --- a/main/_modules/minari/utils/index.html +++ b/main/_modules/minari/utils/index.html @@ -12,7 +12,7 @@ minari.utils - Minari Documentation - + @@ -802,34 +802,34 @@

Source code for minari.utils

-from __future__ import annotations
+from __future__ import annotations
 
-import copy
-import importlib.metadata
-import os
-import re
-import warnings
-from typing import Any, Callable, Dict, Iterable, List, Optional
+import copy
+import importlib.metadata
+import os
+import re
+import warnings
+from typing import Any, Callable, Dict, Iterable, List, Optional
 
-import gymnasium as gym
-import numpy as np
-from gymnasium.core import ActType, ObsType
-from gymnasium.envs.registration import EnvSpec
-from gymnasium.wrappers import RecordEpisodeStatistics  # type: ignore
+import gymnasium as gym
+import numpy as np
+from gymnasium.core import ActType, ObsType
+from gymnasium.envs.registration import EnvSpec
+from gymnasium.wrappers import RecordEpisodeStatistics  # type: ignore
 
-from minari.data_collector.episode_buffer import EpisodeBuffer
-from minari.dataset.minari_dataset import MinariDataset, parse_dataset_id
-from minari.dataset.minari_storage import MinariStorage
-from minari.namespace import create_namespace, list_local_namespaces
-from minari.serialization import deserialize_space
-from minari.storage.datasets_root_dir import get_dataset_path
+from minari.data_collector.episode_buffer import EpisodeBuffer
+from minari.dataset.minari_dataset import MinariDataset, parse_dataset_id
+from minari.dataset.minari_storage import MinariStorage
+from minari.namespace import create_namespace, list_local_namespaces
+from minari.serialization import deserialize_space
+from minari.storage.datasets_root_dir import get_dataset_path
 
 
 # Use importlib due to circular import when: "from minari import __version__"
 __version__ = importlib.metadata.version("minari")
 
 
-def validate_datasets_to_combine(
+def validate_datasets_to_combine(
     datasets_to_combine: List[MinariDataset],
 ) -> EnvSpec | None:
     """Check if the given datasets can be combined.
@@ -891,22 +891,22 @@ 

Source code for minari.utils

     return common_env_spec
 
 
-class RandomPolicy:
+class RandomPolicy:
     """A random action selection policy to compute `ref_min_score`."""
 
-    def __init__(self, env: gym.Env):
+    def __init__(self, env: gym.Env):
         self.action_space = env.action_space
         self.action_space.seed(123)
         self.observation_space = env.observation_space
 
-    def __call__(self, observation: ObsType) -> ActType:
+    def __call__(self, observation: ObsType) -> ActType:
         assert self.observation_space.contains(observation)
         return self.action_space.sample()
 
 
 
[docs] -def combine_datasets(datasets_to_combine: List[MinariDataset], new_dataset_id: str): +def combine_datasets(datasets_to_combine: List[MinariDataset], new_dataset_id: str): """Combine a group of MinariDataset in to a single dataset with its own name id. The new dataset will contain a metadata attribute `combined_datasets` containing a list @@ -950,7 +950,7 @@

Source code for minari.utils

 
 
[docs] -def split_dataset( +def split_dataset( dataset: MinariDataset, sizes: List[int], seed: Optional[int] = None ) -> List[MinariDataset]: """Split a MinariDataset in multiple datasets. @@ -984,7 +984,7 @@

Source code for minari.utils

 
 
 
-def get_average_reference_score(
+def get_average_reference_score(
     env: gym.Env,
     policy: Callable[[ObsType], ActType],
     num_episodes: int,
@@ -1007,7 +1007,7 @@ 

Source code for minari.utils

     return float(mean_ref_score)
 
 
-def _generate_dataset_path(dataset_id: str) -> str | os.PathLike:
+def _generate_dataset_path(dataset_id: str) -> str | os.PathLike:
     """Checks if the dataset already exists locally, then create and return the data storage directory."""
     dataset_path = get_dataset_path(dataset_id)
     if os.path.exists(dataset_path):
@@ -1021,7 +1021,7 @@ 

Source code for minari.utils

     return dataset_path
 
 
-def _generate_dataset_metadata(
+def _generate_dataset_metadata(
     dataset_id: str,
     env_spec: Optional[EnvSpec],
     eval_env: Optional[str | gym.Env | EnvSpec],
@@ -1141,7 +1141,7 @@ 

Source code for minari.utils

 
 
[docs] -def create_dataset_from_buffers( +def create_dataset_from_buffers( dataset_id: str, buffer: List[EpisodeBuffer], env: Optional[str | gym.Env | EnvSpec] = None, @@ -1250,7 +1250,7 @@

Source code for minari.utils

 
 
[docs] -def get_normalized_score(dataset: MinariDataset, returns: np.ndarray) -> np.ndarray: +def get_normalized_score(dataset: MinariDataset, returns: np.ndarray) -> np.ndarray: r"""Normalize undiscounted return of an episode. This function was originally provided in the `D4RL repository <https://github.com/Farama-Foundation/D4RL/blob/71a9549f2091accff93eeff68f1f3ab2c0e0a288/d4rl/offline_env.py#L71>`_. @@ -1283,7 +1283,7 @@

Source code for minari.utils

 
 
 
-def get_env_spec_dict(env_spec: EnvSpec) -> Dict[str, str]:
+def get_env_spec_dict(env_spec: EnvSpec) -> Dict[str, str]:
     """Create dict of the environment specs, including observation and action space."""
     try:
         env = gym.make(env_spec)
@@ -1316,7 +1316,7 @@ 

Source code for minari.utils

     return {k: str(v) for k, v in md_dict.items()}
 
 
-def get_dataset_spec_dict(dataset_spec: Dict) -> Dict[str, str]:
+def get_dataset_spec_dict(dataset_spec: Dict) -> Dict[str, str]:
     """Create dict of the dataset specs, including observation and action space."""
     code_link = dataset_spec.get("code_permalink")
     action_space = dataset_spec.get("action_space")
@@ -1339,7 +1339,7 @@ 

Source code for minari.utils

         dataset_action_space = action_space.__repr__().replace("\n", "")
         md_dict["Dataset Action Space"] = f"`{dataset_action_space}`"
 
-    from minari import supported_dataset_versions
+    from minari import supported_dataset_versions
 
     version = dataset_spec["minari_version"]
     supported = (
diff --git a/main/_static/pygments.css b/main/_static/pygments.css
index 02b4b128..f71bfbfc 100644
--- a/main/_static/pygments.css
+++ b/main/_static/pygments.css
@@ -5,83 +5,83 @@
 .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
 .highlight .hll { background-color: #ffffcc }
 .highlight { background: #f8f8f8; }
-.highlight .c { color: #8f5902; font-style: italic } /* Comment */
-.highlight .err { color: #a40000; border: 1px solid #ef2929 } /* Error */
-.highlight .g { color: #000000 } /* Generic */
-.highlight .k { color: #204a87; font-weight: bold } /* Keyword */
-.highlight .l { color: #000000 } /* Literal */
-.highlight .n { color: #000000 } /* Name */
-.highlight .o { color: #ce5c00; font-weight: bold } /* Operator */
-.highlight .x { color: #000000 } /* Other */
-.highlight .p { color: #000000; font-weight: bold } /* Punctuation */
-.highlight .ch { color: #8f5902; font-style: italic } /* Comment.Hashbang */
-.highlight .cm { color: #8f5902; font-style: italic } /* Comment.Multiline */
-.highlight .cp { color: #8f5902; font-style: italic } /* Comment.Preproc */
-.highlight .cpf { color: #8f5902; font-style: italic } /* Comment.PreprocFile */
-.highlight .c1 { color: #8f5902; font-style: italic } /* Comment.Single */
-.highlight .cs { color: #8f5902; font-style: italic } /* Comment.Special */
-.highlight .gd { color: #a40000 } /* Generic.Deleted */
-.highlight .ge { color: #000000; font-style: italic } /* Generic.Emph */
-.highlight .ges { color: #000000; font-weight: bold; font-style: italic } /* Generic.EmphStrong */
-.highlight .gr { color: #ef2929 } /* Generic.Error */
+.highlight .c { color: #8F5902; font-style: italic } /* Comment */
+.highlight .err { color: #A40000; border: 1px solid #EF2929 } /* Error */
+.highlight .g { color: #000 } /* Generic */
+.highlight .k { color: #204A87; font-weight: bold } /* Keyword */
+.highlight .l { color: #000 } /* Literal */
+.highlight .n { color: #000 } /* Name */
+.highlight .o { color: #CE5C00; font-weight: bold } /* Operator */
+.highlight .x { color: #000 } /* Other */
+.highlight .p { color: #000; font-weight: bold } /* Punctuation */
+.highlight .ch { color: #8F5902; font-style: italic } /* Comment.Hashbang */
+.highlight .cm { color: #8F5902; font-style: italic } /* Comment.Multiline */
+.highlight .cp { color: #8F5902; font-style: italic } /* Comment.Preproc */
+.highlight .cpf { color: #8F5902; font-style: italic } /* Comment.PreprocFile */
+.highlight .c1 { color: #8F5902; font-style: italic } /* Comment.Single */
+.highlight .cs { color: #8F5902; font-style: italic } /* Comment.Special */
+.highlight .gd { color: #A40000 } /* Generic.Deleted */
+.highlight .ge { color: #000; font-style: italic } /* Generic.Emph */
+.highlight .ges { color: #000; font-weight: bold; font-style: italic } /* Generic.EmphStrong */
+.highlight .gr { color: #EF2929 } /* Generic.Error */
 .highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
 .highlight .gi { color: #00A000 } /* Generic.Inserted */
-.highlight .go { color: #000000; font-style: italic } /* Generic.Output */
-.highlight .gp { color: #8f5902 } /* Generic.Prompt */
-.highlight .gs { color: #000000; font-weight: bold } /* Generic.Strong */
+.highlight .go { color: #000; font-style: italic } /* Generic.Output */
+.highlight .gp { color: #8F5902 } /* Generic.Prompt */
+.highlight .gs { color: #000; font-weight: bold } /* Generic.Strong */
 .highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
-.highlight .gt { color: #a40000; font-weight: bold } /* Generic.Traceback */
-.highlight .kc { color: #204a87; font-weight: bold } /* Keyword.Constant */
-.highlight .kd { color: #204a87; font-weight: bold } /* Keyword.Declaration */
-.highlight .kn { color: #204a87; font-weight: bold } /* Keyword.Namespace */
-.highlight .kp { color: #204a87; font-weight: bold } /* Keyword.Pseudo */
-.highlight .kr { color: #204a87; font-weight: bold } /* Keyword.Reserved */
-.highlight .kt { color: #204a87; font-weight: bold } /* Keyword.Type */
-.highlight .ld { color: #000000 } /* Literal.Date */
-.highlight .m { color: #0000cf; font-weight: bold } /* Literal.Number */
-.highlight .s { color: #4e9a06 } /* Literal.String */
-.highlight .na { color: #c4a000 } /* Name.Attribute */
-.highlight .nb { color: #204a87 } /* Name.Builtin */
-.highlight .nc { color: #000000 } /* Name.Class */
-.highlight .no { color: #000000 } /* Name.Constant */
-.highlight .nd { color: #5c35cc; font-weight: bold } /* Name.Decorator */
-.highlight .ni { color: #ce5c00 } /* Name.Entity */
-.highlight .ne { color: #cc0000; font-weight: bold } /* Name.Exception */
-.highlight .nf { color: #000000 } /* Name.Function */
-.highlight .nl { color: #f57900 } /* Name.Label */
-.highlight .nn { color: #000000 } /* Name.Namespace */
-.highlight .nx { color: #000000 } /* Name.Other */
-.highlight .py { color: #000000 } /* Name.Property */
-.highlight .nt { color: #204a87; font-weight: bold } /* Name.Tag */
-.highlight .nv { color: #000000 } /* Name.Variable */
-.highlight .ow { color: #204a87; font-weight: bold } /* Operator.Word */
-.highlight .pm { color: #000000; font-weight: bold } /* Punctuation.Marker */
-.highlight .w { color: #f8f8f8 } /* Text.Whitespace */
-.highlight .mb { color: #0000cf; font-weight: bold } /* Literal.Number.Bin */
-.highlight .mf { color: #0000cf; font-weight: bold } /* Literal.Number.Float */
-.highlight .mh { color: #0000cf; font-weight: bold } /* Literal.Number.Hex */
-.highlight .mi { color: #0000cf; font-weight: bold } /* Literal.Number.Integer */
-.highlight .mo { color: #0000cf; font-weight: bold } /* Literal.Number.Oct */
-.highlight .sa { color: #4e9a06 } /* Literal.String.Affix */
-.highlight .sb { color: #4e9a06 } /* Literal.String.Backtick */
-.highlight .sc { color: #4e9a06 } /* Literal.String.Char */
-.highlight .dl { color: #4e9a06 } /* Literal.String.Delimiter */
-.highlight .sd { color: #8f5902; font-style: italic } /* Literal.String.Doc */
-.highlight .s2 { color: #4e9a06 } /* Literal.String.Double */
-.highlight .se { color: #4e9a06 } /* Literal.String.Escape */
-.highlight .sh { color: #4e9a06 } /* Literal.String.Heredoc */
-.highlight .si { color: #4e9a06 } /* Literal.String.Interpol */
-.highlight .sx { color: #4e9a06 } /* Literal.String.Other */
-.highlight .sr { color: #4e9a06 } /* Literal.String.Regex */
-.highlight .s1 { color: #4e9a06 } /* Literal.String.Single */
-.highlight .ss { color: #4e9a06 } /* Literal.String.Symbol */
-.highlight .bp { color: #3465a4 } /* Name.Builtin.Pseudo */
-.highlight .fm { color: #000000 } /* Name.Function.Magic */
-.highlight .vc { color: #000000 } /* Name.Variable.Class */
-.highlight .vg { color: #000000 } /* Name.Variable.Global */
-.highlight .vi { color: #000000 } /* Name.Variable.Instance */
-.highlight .vm { color: #000000 } /* Name.Variable.Magic */
-.highlight .il { color: #0000cf; font-weight: bold } /* Literal.Number.Integer.Long */
+.highlight .gt { color: #A40000; font-weight: bold } /* Generic.Traceback */
+.highlight .kc { color: #204A87; font-weight: bold } /* Keyword.Constant */
+.highlight .kd { color: #204A87; font-weight: bold } /* Keyword.Declaration */
+.highlight .kn { color: #204A87; font-weight: bold } /* Keyword.Namespace */
+.highlight .kp { color: #204A87; font-weight: bold } /* Keyword.Pseudo */
+.highlight .kr { color: #204A87; font-weight: bold } /* Keyword.Reserved */
+.highlight .kt { color: #204A87; font-weight: bold } /* Keyword.Type */
+.highlight .ld { color: #000 } /* Literal.Date */
+.highlight .m { color: #0000CF; font-weight: bold } /* Literal.Number */
+.highlight .s { color: #4E9A06 } /* Literal.String */
+.highlight .na { color: #C4A000 } /* Name.Attribute */
+.highlight .nb { color: #204A87 } /* Name.Builtin */
+.highlight .nc { color: #000 } /* Name.Class */
+.highlight .no { color: #000 } /* Name.Constant */
+.highlight .nd { color: #5C35CC; font-weight: bold } /* Name.Decorator */
+.highlight .ni { color: #CE5C00 } /* Name.Entity */
+.highlight .ne { color: #C00; font-weight: bold } /* Name.Exception */
+.highlight .nf { color: #000 } /* Name.Function */
+.highlight .nl { color: #F57900 } /* Name.Label */
+.highlight .nn { color: #000 } /* Name.Namespace */
+.highlight .nx { color: #000 } /* Name.Other */
+.highlight .py { color: #000 } /* Name.Property */
+.highlight .nt { color: #204A87; font-weight: bold } /* Name.Tag */
+.highlight .nv { color: #000 } /* Name.Variable */
+.highlight .ow { color: #204A87; font-weight: bold } /* Operator.Word */
+.highlight .pm { color: #000; font-weight: bold } /* Punctuation.Marker */
+.highlight .w { color: #F8F8F8 } /* Text.Whitespace */
+.highlight .mb { color: #0000CF; font-weight: bold } /* Literal.Number.Bin */
+.highlight .mf { color: #0000CF; font-weight: bold } /* Literal.Number.Float */
+.highlight .mh { color: #0000CF; font-weight: bold } /* Literal.Number.Hex */
+.highlight .mi { color: #0000CF; font-weight: bold } /* Literal.Number.Integer */
+.highlight .mo { color: #0000CF; font-weight: bold } /* Literal.Number.Oct */
+.highlight .sa { color: #4E9A06 } /* Literal.String.Affix */
+.highlight .sb { color: #4E9A06 } /* Literal.String.Backtick */
+.highlight .sc { color: #4E9A06 } /* Literal.String.Char */
+.highlight .dl { color: #4E9A06 } /* Literal.String.Delimiter */
+.highlight .sd { color: #8F5902; font-style: italic } /* Literal.String.Doc */
+.highlight .s2 { color: #4E9A06 } /* Literal.String.Double */
+.highlight .se { color: #4E9A06 } /* Literal.String.Escape */
+.highlight .sh { color: #4E9A06 } /* Literal.String.Heredoc */
+.highlight .si { color: #4E9A06 } /* Literal.String.Interpol */
+.highlight .sx { color: #4E9A06 } /* Literal.String.Other */
+.highlight .sr { color: #4E9A06 } /* Literal.String.Regex */
+.highlight .s1 { color: #4E9A06 } /* Literal.String.Single */
+.highlight .ss { color: #4E9A06 } /* Literal.String.Symbol */
+.highlight .bp { color: #3465A4 } /* Name.Builtin.Pseudo */
+.highlight .fm { color: #000 } /* Name.Function.Magic */
+.highlight .vc { color: #000 } /* Name.Variable.Class */
+.highlight .vg { color: #000 } /* Name.Variable.Global */
+.highlight .vi { color: #000 } /* Name.Variable.Instance */
+.highlight .vm { color: #000 } /* Name.Variable.Magic */
+.highlight .il { color: #0000CF; font-weight: bold } /* Literal.Number.Integer.Long */
 @media not print {
 body[data-theme="dark"] .highlight pre { line-height: 125%; }
 body[data-theme="dark"] .highlight td.linenos .normal { color: #aaaaaa; background-color: transparent; padding-left: 5px; padding-right: 5px; }
@@ -89,85 +89,85 @@ body[data-theme="dark"] .highlight span.linenos { color: #aaaaaa; background-col
 body[data-theme="dark"] .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
 body[data-theme="dark"] .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
 body[data-theme="dark"] .highlight .hll { background-color: #404040 }
-body[data-theme="dark"] .highlight { background: #202020; color: #d0d0d0 }
-body[data-theme="dark"] .highlight .c { color: #ababab; font-style: italic } /* Comment */
-body[data-theme="dark"] .highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
-body[data-theme="dark"] .highlight .esc { color: #d0d0d0 } /* Escape */
-body[data-theme="dark"] .highlight .g { color: #d0d0d0 } /* Generic */
-body[data-theme="dark"] .highlight .k { color: #6ebf26; font-weight: bold } /* Keyword */
-body[data-theme="dark"] .highlight .l { color: #d0d0d0 } /* Literal */
-body[data-theme="dark"] .highlight .n { color: #d0d0d0 } /* Name */
-body[data-theme="dark"] .highlight .o { color: #d0d0d0 } /* Operator */
-body[data-theme="dark"] .highlight .x { color: #d0d0d0 } /* Other */
-body[data-theme="dark"] .highlight .p { color: #d0d0d0 } /* Punctuation */
-body[data-theme="dark"] .highlight .ch { color: #ababab; font-style: italic } /* Comment.Hashbang */
-body[data-theme="dark"] .highlight .cm { color: #ababab; font-style: italic } /* Comment.Multiline */
-body[data-theme="dark"] .highlight .cp { color: #ff3a3a; font-weight: bold } /* Comment.Preproc */
-body[data-theme="dark"] .highlight .cpf { color: #ababab; font-style: italic } /* Comment.PreprocFile */
-body[data-theme="dark"] .highlight .c1 { color: #ababab; font-style: italic } /* Comment.Single */
-body[data-theme="dark"] .highlight .cs { color: #e50808; font-weight: bold; background-color: #520000 } /* Comment.Special */
-body[data-theme="dark"] .highlight .gd { color: #ff3a3a } /* Generic.Deleted */
-body[data-theme="dark"] .highlight .ge { color: #d0d0d0; font-style: italic } /* Generic.Emph */
-body[data-theme="dark"] .highlight .ges { color: #d0d0d0; font-weight: bold; font-style: italic } /* Generic.EmphStrong */
-body[data-theme="dark"] .highlight .gr { color: #ff3a3a } /* Generic.Error */
-body[data-theme="dark"] .highlight .gh { color: #ffffff; font-weight: bold } /* Generic.Heading */
+body[data-theme="dark"] .highlight { background: #202020; color: #D0D0D0 }
+body[data-theme="dark"] .highlight .c { color: #ABABAB; font-style: italic } /* Comment */
+body[data-theme="dark"] .highlight .err { color: #A61717; background-color: #E3D2D2 } /* Error */
+body[data-theme="dark"] .highlight .esc { color: #D0D0D0 } /* Escape */
+body[data-theme="dark"] .highlight .g { color: #D0D0D0 } /* Generic */
+body[data-theme="dark"] .highlight .k { color: #6EBF26; font-weight: bold } /* Keyword */
+body[data-theme="dark"] .highlight .l { color: #D0D0D0 } /* Literal */
+body[data-theme="dark"] .highlight .n { color: #D0D0D0 } /* Name */
+body[data-theme="dark"] .highlight .o { color: #D0D0D0 } /* Operator */
+body[data-theme="dark"] .highlight .x { color: #D0D0D0 } /* Other */
+body[data-theme="dark"] .highlight .p { color: #D0D0D0 } /* Punctuation */
+body[data-theme="dark"] .highlight .ch { color: #ABABAB; font-style: italic } /* Comment.Hashbang */
+body[data-theme="dark"] .highlight .cm { color: #ABABAB; font-style: italic } /* Comment.Multiline */
+body[data-theme="dark"] .highlight .cp { color: #FF3A3A; font-weight: bold } /* Comment.Preproc */
+body[data-theme="dark"] .highlight .cpf { color: #ABABAB; font-style: italic } /* Comment.PreprocFile */
+body[data-theme="dark"] .highlight .c1 { color: #ABABAB; font-style: italic } /* Comment.Single */
+body[data-theme="dark"] .highlight .cs { color: #E50808; font-weight: bold; background-color: #520000 } /* Comment.Special */
+body[data-theme="dark"] .highlight .gd { color: #FF3A3A } /* Generic.Deleted */
+body[data-theme="dark"] .highlight .ge { color: #D0D0D0; font-style: italic } /* Generic.Emph */
+body[data-theme="dark"] .highlight .ges { color: #D0D0D0; font-weight: bold; font-style: italic } /* Generic.EmphStrong */
+body[data-theme="dark"] .highlight .gr { color: #FF3A3A } /* Generic.Error */
+body[data-theme="dark"] .highlight .gh { color: #FFF; font-weight: bold } /* Generic.Heading */
 body[data-theme="dark"] .highlight .gi { color: #589819 } /* Generic.Inserted */
-body[data-theme="dark"] .highlight .go { color: #cccccc } /* Generic.Output */
-body[data-theme="dark"] .highlight .gp { color: #aaaaaa } /* Generic.Prompt */
-body[data-theme="dark"] .highlight .gs { color: #d0d0d0; font-weight: bold } /* Generic.Strong */
-body[data-theme="dark"] .highlight .gu { color: #ffffff; text-decoration: underline } /* Generic.Subheading */
-body[data-theme="dark"] .highlight .gt { color: #ff3a3a } /* Generic.Traceback */
-body[data-theme="dark"] .highlight .kc { color: #6ebf26; font-weight: bold } /* Keyword.Constant */
-body[data-theme="dark"] .highlight .kd { color: #6ebf26; font-weight: bold } /* Keyword.Declaration */
-body[data-theme="dark"] .highlight .kn { color: #6ebf26; font-weight: bold } /* Keyword.Namespace */
-body[data-theme="dark"] .highlight .kp { color: #6ebf26 } /* Keyword.Pseudo */
-body[data-theme="dark"] .highlight .kr { color: #6ebf26; font-weight: bold } /* Keyword.Reserved */
-body[data-theme="dark"] .highlight .kt { color: #6ebf26; font-weight: bold } /* Keyword.Type */
-body[data-theme="dark"] .highlight .ld { color: #d0d0d0 } /* Literal.Date */
-body[data-theme="dark"] .highlight .m { color: #51b2fd } /* Literal.Number */
-body[data-theme="dark"] .highlight .s { color: #ed9d13 } /* Literal.String */
-body[data-theme="dark"] .highlight .na { color: #bbbbbb } /* Name.Attribute */
-body[data-theme="dark"] .highlight .nb { color: #2fbccd } /* Name.Builtin */
-body[data-theme="dark"] .highlight .nc { color: #71adff; text-decoration: underline } /* Name.Class */
-body[data-theme="dark"] .highlight .no { color: #40ffff } /* Name.Constant */
-body[data-theme="dark"] .highlight .nd { color: #ffa500 } /* Name.Decorator */
-body[data-theme="dark"] .highlight .ni { color: #d0d0d0 } /* Name.Entity */
-body[data-theme="dark"] .highlight .ne { color: #bbbbbb } /* Name.Exception */
-body[data-theme="dark"] .highlight .nf { color: #71adff } /* Name.Function */
-body[data-theme="dark"] .highlight .nl { color: #d0d0d0 } /* Name.Label */
-body[data-theme="dark"] .highlight .nn { color: #71adff; text-decoration: underline } /* Name.Namespace */
-body[data-theme="dark"] .highlight .nx { color: #d0d0d0 } /* Name.Other */
-body[data-theme="dark"] .highlight .py { color: #d0d0d0 } /* Name.Property */
-body[data-theme="dark"] .highlight .nt { color: #6ebf26; font-weight: bold } /* Name.Tag */
-body[data-theme="dark"] .highlight .nv { color: #40ffff } /* Name.Variable */
-body[data-theme="dark"] .highlight .ow { color: #6ebf26; font-weight: bold } /* Operator.Word */
-body[data-theme="dark"] .highlight .pm { color: #d0d0d0 } /* Punctuation.Marker */
-body[data-theme="dark"] .highlight .w { color: #666666 } /* Text.Whitespace */
-body[data-theme="dark"] .highlight .mb { color: #51b2fd } /* Literal.Number.Bin */
-body[data-theme="dark"] .highlight .mf { color: #51b2fd } /* Literal.Number.Float */
-body[data-theme="dark"] .highlight .mh { color: #51b2fd } /* Literal.Number.Hex */
-body[data-theme="dark"] .highlight .mi { color: #51b2fd } /* Literal.Number.Integer */
-body[data-theme="dark"] .highlight .mo { color: #51b2fd } /* Literal.Number.Oct */
-body[data-theme="dark"] .highlight .sa { color: #ed9d13 } /* Literal.String.Affix */
-body[data-theme="dark"] .highlight .sb { color: #ed9d13 } /* Literal.String.Backtick */
-body[data-theme="dark"] .highlight .sc { color: #ed9d13 } /* Literal.String.Char */
-body[data-theme="dark"] .highlight .dl { color: #ed9d13 } /* Literal.String.Delimiter */
-body[data-theme="dark"] .highlight .sd { color: #ed9d13 } /* Literal.String.Doc */
-body[data-theme="dark"] .highlight .s2 { color: #ed9d13 } /* Literal.String.Double */
-body[data-theme="dark"] .highlight .se { color: #ed9d13 } /* Literal.String.Escape */
-body[data-theme="dark"] .highlight .sh { color: #ed9d13 } /* Literal.String.Heredoc */
-body[data-theme="dark"] .highlight .si { color: #ed9d13 } /* Literal.String.Interpol */
-body[data-theme="dark"] .highlight .sx { color: #ffa500 } /* Literal.String.Other */
-body[data-theme="dark"] .highlight .sr { color: #ed9d13 } /* Literal.String.Regex */
-body[data-theme="dark"] .highlight .s1 { color: #ed9d13 } /* Literal.String.Single */
-body[data-theme="dark"] .highlight .ss { color: #ed9d13 } /* Literal.String.Symbol */
-body[data-theme="dark"] .highlight .bp { color: #2fbccd } /* Name.Builtin.Pseudo */
-body[data-theme="dark"] .highlight .fm { color: #71adff } /* Name.Function.Magic */
-body[data-theme="dark"] .highlight .vc { color: #40ffff } /* Name.Variable.Class */
-body[data-theme="dark"] .highlight .vg { color: #40ffff } /* Name.Variable.Global */
-body[data-theme="dark"] .highlight .vi { color: #40ffff } /* Name.Variable.Instance */
-body[data-theme="dark"] .highlight .vm { color: #40ffff } /* Name.Variable.Magic */
-body[data-theme="dark"] .highlight .il { color: #51b2fd } /* Literal.Number.Integer.Long */
+body[data-theme="dark"] .highlight .go { color: #CCC } /* Generic.Output */
+body[data-theme="dark"] .highlight .gp { color: #AAA } /* Generic.Prompt */
+body[data-theme="dark"] .highlight .gs { color: #D0D0D0; font-weight: bold } /* Generic.Strong */
+body[data-theme="dark"] .highlight .gu { color: #FFF; text-decoration: underline } /* Generic.Subheading */
+body[data-theme="dark"] .highlight .gt { color: #FF3A3A } /* Generic.Traceback */
+body[data-theme="dark"] .highlight .kc { color: #6EBF26; font-weight: bold } /* Keyword.Constant */
+body[data-theme="dark"] .highlight .kd { color: #6EBF26; font-weight: bold } /* Keyword.Declaration */
+body[data-theme="dark"] .highlight .kn { color: #6EBF26; font-weight: bold } /* Keyword.Namespace */
+body[data-theme="dark"] .highlight .kp { color: #6EBF26 } /* Keyword.Pseudo */
+body[data-theme="dark"] .highlight .kr { color: #6EBF26; font-weight: bold } /* Keyword.Reserved */
+body[data-theme="dark"] .highlight .kt { color: #6EBF26; font-weight: bold } /* Keyword.Type */
+body[data-theme="dark"] .highlight .ld { color: #D0D0D0 } /* Literal.Date */
+body[data-theme="dark"] .highlight .m { color: #51B2FD } /* Literal.Number */
+body[data-theme="dark"] .highlight .s { color: #ED9D13 } /* Literal.String */
+body[data-theme="dark"] .highlight .na { color: #BBB } /* Name.Attribute */
+body[data-theme="dark"] .highlight .nb { color: #2FBCCD } /* Name.Builtin */
+body[data-theme="dark"] .highlight .nc { color: #71ADFF; text-decoration: underline } /* Name.Class */
+body[data-theme="dark"] .highlight .no { color: #40FFFF } /* Name.Constant */
+body[data-theme="dark"] .highlight .nd { color: #FFA500 } /* Name.Decorator */
+body[data-theme="dark"] .highlight .ni { color: #D0D0D0 } /* Name.Entity */
+body[data-theme="dark"] .highlight .ne { color: #BBB } /* Name.Exception */
+body[data-theme="dark"] .highlight .nf { color: #71ADFF } /* Name.Function */
+body[data-theme="dark"] .highlight .nl { color: #D0D0D0 } /* Name.Label */
+body[data-theme="dark"] .highlight .nn { color: #71ADFF; text-decoration: underline } /* Name.Namespace */
+body[data-theme="dark"] .highlight .nx { color: #D0D0D0 } /* Name.Other */
+body[data-theme="dark"] .highlight .py { color: #D0D0D0 } /* Name.Property */
+body[data-theme="dark"] .highlight .nt { color: #6EBF26; font-weight: bold } /* Name.Tag */
+body[data-theme="dark"] .highlight .nv { color: #40FFFF } /* Name.Variable */
+body[data-theme="dark"] .highlight .ow { color: #6EBF26; font-weight: bold } /* Operator.Word */
+body[data-theme="dark"] .highlight .pm { color: #D0D0D0 } /* Punctuation.Marker */
+body[data-theme="dark"] .highlight .w { color: #666 } /* Text.Whitespace */
+body[data-theme="dark"] .highlight .mb { color: #51B2FD } /* Literal.Number.Bin */
+body[data-theme="dark"] .highlight .mf { color: #51B2FD } /* Literal.Number.Float */
+body[data-theme="dark"] .highlight .mh { color: #51B2FD } /* Literal.Number.Hex */
+body[data-theme="dark"] .highlight .mi { color: #51B2FD } /* Literal.Number.Integer */
+body[data-theme="dark"] .highlight .mo { color: #51B2FD } /* Literal.Number.Oct */
+body[data-theme="dark"] .highlight .sa { color: #ED9D13 } /* Literal.String.Affix */
+body[data-theme="dark"] .highlight .sb { color: #ED9D13 } /* Literal.String.Backtick */
+body[data-theme="dark"] .highlight .sc { color: #ED9D13 } /* Literal.String.Char */
+body[data-theme="dark"] .highlight .dl { color: #ED9D13 } /* Literal.String.Delimiter */
+body[data-theme="dark"] .highlight .sd { color: #ED9D13 } /* Literal.String.Doc */
+body[data-theme="dark"] .highlight .s2 { color: #ED9D13 } /* Literal.String.Double */
+body[data-theme="dark"] .highlight .se { color: #ED9D13 } /* Literal.String.Escape */
+body[data-theme="dark"] .highlight .sh { color: #ED9D13 } /* Literal.String.Heredoc */
+body[data-theme="dark"] .highlight .si { color: #ED9D13 } /* Literal.String.Interpol */
+body[data-theme="dark"] .highlight .sx { color: #FFA500 } /* Literal.String.Other */
+body[data-theme="dark"] .highlight .sr { color: #ED9D13 } /* Literal.String.Regex */
+body[data-theme="dark"] .highlight .s1 { color: #ED9D13 } /* Literal.String.Single */
+body[data-theme="dark"] .highlight .ss { color: #ED9D13 } /* Literal.String.Symbol */
+body[data-theme="dark"] .highlight .bp { color: #2FBCCD } /* Name.Builtin.Pseudo */
+body[data-theme="dark"] .highlight .fm { color: #71ADFF } /* Name.Function.Magic */
+body[data-theme="dark"] .highlight .vc { color: #40FFFF } /* Name.Variable.Class */
+body[data-theme="dark"] .highlight .vg { color: #40FFFF } /* Name.Variable.Global */
+body[data-theme="dark"] .highlight .vi { color: #40FFFF } /* Name.Variable.Instance */
+body[data-theme="dark"] .highlight .vm { color: #40FFFF } /* Name.Variable.Magic */
+body[data-theme="dark"] .highlight .il { color: #51B2FD } /* Literal.Number.Integer.Long */
 @media (prefers-color-scheme: dark) {
 body:not([data-theme="light"]) .highlight pre { line-height: 125%; }
 body:not([data-theme="light"]) .highlight td.linenos .normal { color: #aaaaaa; background-color: transparent; padding-left: 5px; padding-right: 5px; }
@@ -175,84 +175,84 @@ body:not([data-theme="light"]) .highlight span.linenos { color: #aaaaaa; backgro
 body:not([data-theme="light"]) .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
 body:not([data-theme="light"]) .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
 body:not([data-theme="light"]) .highlight .hll { background-color: #404040 }
-body:not([data-theme="light"]) .highlight { background: #202020; color: #d0d0d0 }
-body:not([data-theme="light"]) .highlight .c { color: #ababab; font-style: italic } /* Comment */
-body:not([data-theme="light"]) .highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
-body:not([data-theme="light"]) .highlight .esc { color: #d0d0d0 } /* Escape */
-body:not([data-theme="light"]) .highlight .g { color: #d0d0d0 } /* Generic */
-body:not([data-theme="light"]) .highlight .k { color: #6ebf26; font-weight: bold } /* Keyword */
-body:not([data-theme="light"]) .highlight .l { color: #d0d0d0 } /* Literal */
-body:not([data-theme="light"]) .highlight .n { color: #d0d0d0 } /* Name */
-body:not([data-theme="light"]) .highlight .o { color: #d0d0d0 } /* Operator */
-body:not([data-theme="light"]) .highlight .x { color: #d0d0d0 } /* Other */
-body:not([data-theme="light"]) .highlight .p { color: #d0d0d0 } /* Punctuation */
-body:not([data-theme="light"]) .highlight .ch { color: #ababab; font-style: italic } /* Comment.Hashbang */
-body:not([data-theme="light"]) .highlight .cm { color: #ababab; font-style: italic } /* Comment.Multiline */
-body:not([data-theme="light"]) .highlight .cp { color: #ff3a3a; font-weight: bold } /* Comment.Preproc */
-body:not([data-theme="light"]) .highlight .cpf { color: #ababab; font-style: italic } /* Comment.PreprocFile */
-body:not([data-theme="light"]) .highlight .c1 { color: #ababab; font-style: italic } /* Comment.Single */
-body:not([data-theme="light"]) .highlight .cs { color: #e50808; font-weight: bold; background-color: #520000 } /* Comment.Special */
-body:not([data-theme="light"]) .highlight .gd { color: #ff3a3a } /* Generic.Deleted */
-body:not([data-theme="light"]) .highlight .ge { color: #d0d0d0; font-style: italic } /* Generic.Emph */
-body:not([data-theme="light"]) .highlight .ges { color: #d0d0d0; font-weight: bold; font-style: italic } /* Generic.EmphStrong */
-body:not([data-theme="light"]) .highlight .gr { color: #ff3a3a } /* Generic.Error */
-body:not([data-theme="light"]) .highlight .gh { color: #ffffff; font-weight: bold } /* Generic.Heading */
+body:not([data-theme="light"]) .highlight { background: #202020; color: #D0D0D0 }
+body:not([data-theme="light"]) .highlight .c { color: #ABABAB; font-style: italic } /* Comment */
+body:not([data-theme="light"]) .highlight .err { color: #A61717; background-color: #E3D2D2 } /* Error */
+body:not([data-theme="light"]) .highlight .esc { color: #D0D0D0 } /* Escape */
+body:not([data-theme="light"]) .highlight .g { color: #D0D0D0 } /* Generic */
+body:not([data-theme="light"]) .highlight .k { color: #6EBF26; font-weight: bold } /* Keyword */
+body:not([data-theme="light"]) .highlight .l { color: #D0D0D0 } /* Literal */
+body:not([data-theme="light"]) .highlight .n { color: #D0D0D0 } /* Name */
+body:not([data-theme="light"]) .highlight .o { color: #D0D0D0 } /* Operator */
+body:not([data-theme="light"]) .highlight .x { color: #D0D0D0 } /* Other */
+body:not([data-theme="light"]) .highlight .p { color: #D0D0D0 } /* Punctuation */
+body:not([data-theme="light"]) .highlight .ch { color: #ABABAB; font-style: italic } /* Comment.Hashbang */
+body:not([data-theme="light"]) .highlight .cm { color: #ABABAB; font-style: italic } /* Comment.Multiline */
+body:not([data-theme="light"]) .highlight .cp { color: #FF3A3A; font-weight: bold } /* Comment.Preproc */
+body:not([data-theme="light"]) .highlight .cpf { color: #ABABAB; font-style: italic } /* Comment.PreprocFile */
+body:not([data-theme="light"]) .highlight .c1 { color: #ABABAB; font-style: italic } /* Comment.Single */
+body:not([data-theme="light"]) .highlight .cs { color: #E50808; font-weight: bold; background-color: #520000 } /* Comment.Special */
+body:not([data-theme="light"]) .highlight .gd { color: #FF3A3A } /* Generic.Deleted */
+body:not([data-theme="light"]) .highlight .ge { color: #D0D0D0; font-style: italic } /* Generic.Emph */
+body:not([data-theme="light"]) .highlight .ges { color: #D0D0D0; font-weight: bold; font-style: italic } /* Generic.EmphStrong */
+body:not([data-theme="light"]) .highlight .gr { color: #FF3A3A } /* Generic.Error */
+body:not([data-theme="light"]) .highlight .gh { color: #FFF; font-weight: bold } /* Generic.Heading */
 body:not([data-theme="light"]) .highlight .gi { color: #589819 } /* Generic.Inserted */
-body:not([data-theme="light"]) .highlight .go { color: #cccccc } /* Generic.Output */
-body:not([data-theme="light"]) .highlight .gp { color: #aaaaaa } /* Generic.Prompt */
-body:not([data-theme="light"]) .highlight .gs { color: #d0d0d0; font-weight: bold } /* Generic.Strong */
-body:not([data-theme="light"]) .highlight .gu { color: #ffffff; text-decoration: underline } /* Generic.Subheading */
-body:not([data-theme="light"]) .highlight .gt { color: #ff3a3a } /* Generic.Traceback */
-body:not([data-theme="light"]) .highlight .kc { color: #6ebf26; font-weight: bold } /* Keyword.Constant */
-body:not([data-theme="light"]) .highlight .kd { color: #6ebf26; font-weight: bold } /* Keyword.Declaration */
-body:not([data-theme="light"]) .highlight .kn { color: #6ebf26; font-weight: bold } /* Keyword.Namespace */
-body:not([data-theme="light"]) .highlight .kp { color: #6ebf26 } /* Keyword.Pseudo */
-body:not([data-theme="light"]) .highlight .kr { color: #6ebf26; font-weight: bold } /* Keyword.Reserved */
-body:not([data-theme="light"]) .highlight .kt { color: #6ebf26; font-weight: bold } /* Keyword.Type */
-body:not([data-theme="light"]) .highlight .ld { color: #d0d0d0 } /* Literal.Date */
-body:not([data-theme="light"]) .highlight .m { color: #51b2fd } /* Literal.Number */
-body:not([data-theme="light"]) .highlight .s { color: #ed9d13 } /* Literal.String */
-body:not([data-theme="light"]) .highlight .na { color: #bbbbbb } /* Name.Attribute */
-body:not([data-theme="light"]) .highlight .nb { color: #2fbccd } /* Name.Builtin */
-body:not([data-theme="light"]) .highlight .nc { color: #71adff; text-decoration: underline } /* Name.Class */
-body:not([data-theme="light"]) .highlight .no { color: #40ffff } /* Name.Constant */
-body:not([data-theme="light"]) .highlight .nd { color: #ffa500 } /* Name.Decorator */
-body:not([data-theme="light"]) .highlight .ni { color: #d0d0d0 } /* Name.Entity */
-body:not([data-theme="light"]) .highlight .ne { color: #bbbbbb } /* Name.Exception */
-body:not([data-theme="light"]) .highlight .nf { color: #71adff } /* Name.Function */
-body:not([data-theme="light"]) .highlight .nl { color: #d0d0d0 } /* Name.Label */
-body:not([data-theme="light"]) .highlight .nn { color: #71adff; text-decoration: underline } /* Name.Namespace */
-body:not([data-theme="light"]) .highlight .nx { color: #d0d0d0 } /* Name.Other */
-body:not([data-theme="light"]) .highlight .py { color: #d0d0d0 } /* Name.Property */
-body:not([data-theme="light"]) .highlight .nt { color: #6ebf26; font-weight: bold } /* Name.Tag */
-body:not([data-theme="light"]) .highlight .nv { color: #40ffff } /* Name.Variable */
-body:not([data-theme="light"]) .highlight .ow { color: #6ebf26; font-weight: bold } /* Operator.Word */
-body:not([data-theme="light"]) .highlight .pm { color: #d0d0d0 } /* Punctuation.Marker */
-body:not([data-theme="light"]) .highlight .w { color: #666666 } /* Text.Whitespace */
-body:not([data-theme="light"]) .highlight .mb { color: #51b2fd } /* Literal.Number.Bin */
-body:not([data-theme="light"]) .highlight .mf { color: #51b2fd } /* Literal.Number.Float */
-body:not([data-theme="light"]) .highlight .mh { color: #51b2fd } /* Literal.Number.Hex */
-body:not([data-theme="light"]) .highlight .mi { color: #51b2fd } /* Literal.Number.Integer */
-body:not([data-theme="light"]) .highlight .mo { color: #51b2fd } /* Literal.Number.Oct */
-body:not([data-theme="light"]) .highlight .sa { color: #ed9d13 } /* Literal.String.Affix */
-body:not([data-theme="light"]) .highlight .sb { color: #ed9d13 } /* Literal.String.Backtick */
-body:not([data-theme="light"]) .highlight .sc { color: #ed9d13 } /* Literal.String.Char */
-body:not([data-theme="light"]) .highlight .dl { color: #ed9d13 } /* Literal.String.Delimiter */
-body:not([data-theme="light"]) .highlight .sd { color: #ed9d13 } /* Literal.String.Doc */
-body:not([data-theme="light"]) .highlight .s2 { color: #ed9d13 } /* Literal.String.Double */
-body:not([data-theme="light"]) .highlight .se { color: #ed9d13 } /* Literal.String.Escape */
-body:not([data-theme="light"]) .highlight .sh { color: #ed9d13 } /* Literal.String.Heredoc */
-body:not([data-theme="light"]) .highlight .si { color: #ed9d13 } /* Literal.String.Interpol */
-body:not([data-theme="light"]) .highlight .sx { color: #ffa500 } /* Literal.String.Other */
-body:not([data-theme="light"]) .highlight .sr { color: #ed9d13 } /* Literal.String.Regex */
-body:not([data-theme="light"]) .highlight .s1 { color: #ed9d13 } /* Literal.String.Single */
-body:not([data-theme="light"]) .highlight .ss { color: #ed9d13 } /* Literal.String.Symbol */
-body:not([data-theme="light"]) .highlight .bp { color: #2fbccd } /* Name.Builtin.Pseudo */
-body:not([data-theme="light"]) .highlight .fm { color: #71adff } /* Name.Function.Magic */
-body:not([data-theme="light"]) .highlight .vc { color: #40ffff } /* Name.Variable.Class */
-body:not([data-theme="light"]) .highlight .vg { color: #40ffff } /* Name.Variable.Global */
-body:not([data-theme="light"]) .highlight .vi { color: #40ffff } /* Name.Variable.Instance */
-body:not([data-theme="light"]) .highlight .vm { color: #40ffff } /* Name.Variable.Magic */
-body:not([data-theme="light"]) .highlight .il { color: #51b2fd } /* Literal.Number.Integer.Long */
+body:not([data-theme="light"]) .highlight .go { color: #CCC } /* Generic.Output */
+body:not([data-theme="light"]) .highlight .gp { color: #AAA } /* Generic.Prompt */
+body:not([data-theme="light"]) .highlight .gs { color: #D0D0D0; font-weight: bold } /* Generic.Strong */
+body:not([data-theme="light"]) .highlight .gu { color: #FFF; text-decoration: underline } /* Generic.Subheading */
+body:not([data-theme="light"]) .highlight .gt { color: #FF3A3A } /* Generic.Traceback */
+body:not([data-theme="light"]) .highlight .kc { color: #6EBF26; font-weight: bold } /* Keyword.Constant */
+body:not([data-theme="light"]) .highlight .kd { color: #6EBF26; font-weight: bold } /* Keyword.Declaration */
+body:not([data-theme="light"]) .highlight .kn { color: #6EBF26; font-weight: bold } /* Keyword.Namespace */
+body:not([data-theme="light"]) .highlight .kp { color: #6EBF26 } /* Keyword.Pseudo */
+body:not([data-theme="light"]) .highlight .kr { color: #6EBF26; font-weight: bold } /* Keyword.Reserved */
+body:not([data-theme="light"]) .highlight .kt { color: #6EBF26; font-weight: bold } /* Keyword.Type */
+body:not([data-theme="light"]) .highlight .ld { color: #D0D0D0 } /* Literal.Date */
+body:not([data-theme="light"]) .highlight .m { color: #51B2FD } /* Literal.Number */
+body:not([data-theme="light"]) .highlight .s { color: #ED9D13 } /* Literal.String */
+body:not([data-theme="light"]) .highlight .na { color: #BBB } /* Name.Attribute */
+body:not([data-theme="light"]) .highlight .nb { color: #2FBCCD } /* Name.Builtin */
+body:not([data-theme="light"]) .highlight .nc { color: #71ADFF; text-decoration: underline } /* Name.Class */
+body:not([data-theme="light"]) .highlight .no { color: #40FFFF } /* Name.Constant */
+body:not([data-theme="light"]) .highlight .nd { color: #FFA500 } /* Name.Decorator */
+body:not([data-theme="light"]) .highlight .ni { color: #D0D0D0 } /* Name.Entity */
+body:not([data-theme="light"]) .highlight .ne { color: #BBB } /* Name.Exception */
+body:not([data-theme="light"]) .highlight .nf { color: #71ADFF } /* Name.Function */
+body:not([data-theme="light"]) .highlight .nl { color: #D0D0D0 } /* Name.Label */
+body:not([data-theme="light"]) .highlight .nn { color: #71ADFF; text-decoration: underline } /* Name.Namespace */
+body:not([data-theme="light"]) .highlight .nx { color: #D0D0D0 } /* Name.Other */
+body:not([data-theme="light"]) .highlight .py { color: #D0D0D0 } /* Name.Property */
+body:not([data-theme="light"]) .highlight .nt { color: #6EBF26; font-weight: bold } /* Name.Tag */
+body:not([data-theme="light"]) .highlight .nv { color: #40FFFF } /* Name.Variable */
+body:not([data-theme="light"]) .highlight .ow { color: #6EBF26; font-weight: bold } /* Operator.Word */
+body:not([data-theme="light"]) .highlight .pm { color: #D0D0D0 } /* Punctuation.Marker */
+body:not([data-theme="light"]) .highlight .w { color: #666 } /* Text.Whitespace */
+body:not([data-theme="light"]) .highlight .mb { color: #51B2FD } /* Literal.Number.Bin */
+body:not([data-theme="light"]) .highlight .mf { color: #51B2FD } /* Literal.Number.Float */
+body:not([data-theme="light"]) .highlight .mh { color: #51B2FD } /* Literal.Number.Hex */
+body:not([data-theme="light"]) .highlight .mi { color: #51B2FD } /* Literal.Number.Integer */
+body:not([data-theme="light"]) .highlight .mo { color: #51B2FD } /* Literal.Number.Oct */
+body:not([data-theme="light"]) .highlight .sa { color: #ED9D13 } /* Literal.String.Affix */
+body:not([data-theme="light"]) .highlight .sb { color: #ED9D13 } /* Literal.String.Backtick */
+body:not([data-theme="light"]) .highlight .sc { color: #ED9D13 } /* Literal.String.Char */
+body:not([data-theme="light"]) .highlight .dl { color: #ED9D13 } /* Literal.String.Delimiter */
+body:not([data-theme="light"]) .highlight .sd { color: #ED9D13 } /* Literal.String.Doc */
+body:not([data-theme="light"]) .highlight .s2 { color: #ED9D13 } /* Literal.String.Double */
+body:not([data-theme="light"]) .highlight .se { color: #ED9D13 } /* Literal.String.Escape */
+body:not([data-theme="light"]) .highlight .sh { color: #ED9D13 } /* Literal.String.Heredoc */
+body:not([data-theme="light"]) .highlight .si { color: #ED9D13 } /* Literal.String.Interpol */
+body:not([data-theme="light"]) .highlight .sx { color: #FFA500 } /* Literal.String.Other */
+body:not([data-theme="light"]) .highlight .sr { color: #ED9D13 } /* Literal.String.Regex */
+body:not([data-theme="light"]) .highlight .s1 { color: #ED9D13 } /* Literal.String.Single */
+body:not([data-theme="light"]) .highlight .ss { color: #ED9D13 } /* Literal.String.Symbol */
+body:not([data-theme="light"]) .highlight .bp { color: #2FBCCD } /* Name.Builtin.Pseudo */
+body:not([data-theme="light"]) .highlight .fm { color: #71ADFF } /* Name.Function.Magic */
+body:not([data-theme="light"]) .highlight .vc { color: #40FFFF } /* Name.Variable.Class */
+body:not([data-theme="light"]) .highlight .vg { color: #40FFFF } /* Name.Variable.Global */
+body:not([data-theme="light"]) .highlight .vi { color: #40FFFF } /* Name.Variable.Instance */
+body:not([data-theme="light"]) .highlight .vm { color: #40FFFF } /* Name.Variable.Magic */
+body:not([data-theme="light"]) .highlight .il { color: #51B2FD } /* Literal.Number.Integer.Long */
 }
 }
\ No newline at end of file
diff --git a/main/api/data_collector/episode_buffer/index.html b/main/api/data_collector/episode_buffer/index.html
index 8ad6b5c0..708e48c3 100644
--- a/main/api/data_collector/episode_buffer/index.html
+++ b/main/api/data_collector/episode_buffer/index.html
@@ -13,7 +13,7 @@
 
     
         EpisodeBuffer - Minari Documentation
-      
+      
     
     
     
diff --git a/main/api/data_collector/episode_metadata_callback/index.html b/main/api/data_collector/episode_metadata_callback/index.html
index 38dc29f4..66fc8103 100644
--- a/main/api/data_collector/episode_metadata_callback/index.html
+++ b/main/api/data_collector/episode_metadata_callback/index.html
@@ -13,7 +13,7 @@
 
     
         EpisodeMetadataCallback - Minari Documentation
-      
+      
     
     
     
diff --git a/main/api/data_collector/index.html b/main/api/data_collector/index.html
index dd2424f4..a9a9e132 100644
--- a/main/api/data_collector/index.html
+++ b/main/api/data_collector/index.html
@@ -13,7 +13,7 @@
 
     
         DataCollector - Minari Documentation
-      
+      
     
     
     
@@ -823,8 +823,8 @@ 

minari.DataCollector

Gymnasium environment wrapper that collects step data.

This wrapper is meant to work as a temporary buffer of the environment data before creating a Minari dataset. The creation of the buffers that will be convert to a Minari dataset is agnostic to the user:

-
import minari
-import gymnasium as gym
+
import minari
+import gymnasium as gym
 
 env = minari.DataCollector(gym.make('EnvID'))
 
diff --git a/main/api/data_collector/step_data_callback/index.html b/main/api/data_collector/step_data_callback/index.html
index 4040a92b..3ded099d 100644
--- a/main/api/data_collector/step_data_callback/index.html
+++ b/main/api/data_collector/step_data_callback/index.html
@@ -13,7 +13,7 @@
 
     
         StepDataCallback - Minari Documentation
-      
+      
     
     
     
@@ -832,8 +832,8 @@ 

Methods

The input arguments belong to a Gymnasium stepping transition: obs, rew, terminated, truncated, info = env.step(action). Override this method to add additional keys or edit each environment’s step returns. Additional nested dictionaries can be added to the returned step dictionary as follows:

-
class CustomStepDataCallback(StepDataCallback):
-    def __call__(self, env, **kwargs):
+
class CustomStepDataCallback(StepDataCallback):
+    def __call__(self, env, **kwargs):
         step_data = super().__call__(env, **kwargs)
         step_data['environment_states'] = {}
         step_data['environment_states']['pose'] = {}
diff --git a/main/api/minari_dataset/episode_data/index.html b/main/api/minari_dataset/episode_data/index.html
index cbfe7937..c2aed7d0 100644
--- a/main/api/minari_dataset/episode_data/index.html
+++ b/main/api/minari_dataset/episode_data/index.html
@@ -13,7 +13,7 @@
 
     
         EpisodeData - Minari Documentation
-      
+      
     
     
     
diff --git a/main/api/minari_dataset/minari_dataset/index.html b/main/api/minari_dataset/minari_dataset/index.html
index a19303ee..148fd2c4 100644
--- a/main/api/minari_dataset/minari_dataset/index.html
+++ b/main/api/minari_dataset/minari_dataset/index.html
@@ -13,7 +13,7 @@
 
     
         MinariDataset - Minari Documentation
-      
+      
     
     
     
diff --git a/main/api/minari_dataset/minari_storage/index.html b/main/api/minari_dataset/minari_storage/index.html
index 4a973ee7..26bb9128 100644
--- a/main/api/minari_dataset/minari_storage/index.html
+++ b/main/api/minari_dataset/minari_storage/index.html
@@ -13,7 +13,7 @@
 
     
         MinariStorage - Minari Documentation
-      
+      
     
     
     
diff --git a/main/api/minari_dataset/step_data/index.html b/main/api/minari_dataset/step_data/index.html
index f7640cf4..3a73982d 100644
--- a/main/api/minari_dataset/step_data/index.html
+++ b/main/api/minari_dataset/step_data/index.html
@@ -13,7 +13,7 @@
 
     
         StepData - Minari Documentation
-      
+      
     
     
     
diff --git a/main/api/minari_functions/index.html b/main/api/minari_functions/index.html
index e0ee6571..dac704a0 100644
--- a/main/api/minari_functions/index.html
+++ b/main/api/minari_functions/index.html
@@ -13,7 +13,7 @@
 
     
         Minari - Minari Documentation
-      
+      
     
     
     
diff --git a/main/api/namespace/namespace/index.html b/main/api/namespace/namespace/index.html
index 77cb9f36..3a136d2b 100644
--- a/main/api/namespace/namespace/index.html
+++ b/main/api/namespace/namespace/index.html
@@ -13,7 +13,7 @@
 
     
         Namespace - Minari Documentation
-      
+      
     
     
     
diff --git a/main/content/basic_usage/index.html b/main/content/basic_usage/index.html
index e19d53af..014efb78 100644
--- a/main/content/basic_usage/index.html
+++ b/main/content/basic_usage/index.html
@@ -13,7 +13,7 @@
 
     
         Basic Usage - Minari Documentation
-      
+      
     
     
     
@@ -879,7 +879,7 @@ 

Load Local Datasetsminari.MinariDataset object using the minari.load_dataset() Python function as follows:

-
import minari
+
import minari
 dataset = minari.load_dataset('D4RL/door/human-v2')
 print("Observation space:", dataset.observation_space)
 print("Action space:", dataset.action_space)
@@ -897,7 +897,7 @@ 

Load Local Datasets

Sampling Episodes

Minari can retrieve a certain amount of episode shards from the dataset files as a list of minari.EpisodeData objects. The sampling process of the Minari datasets is performed through the method minari.MinariDataset.sample_episodes(). This method is a generator that randomly samples n number of minari.EpisodeData from the minari.MinariDataset. The seed of this generator can be set with minari.MinariDataset.set_seed(). For example:

-
import minari
+
import minari
 
 dataset = minari.load_dataset("D4RL/door/human-v2")
 dataset.set_seed(seed=123)
@@ -921,7 +921,7 @@ 

Sampling Episodesminari.MinariDataset.sample_episodes() calls.

Minari doesn’t serve the purpose of creating replay buffers out of the Minari datasets, we leave this task for the user to make for their specific needs. To create your own buffers and dataloaders, you may need the ability to iterate through an episodes in a deterministic order. This can be achieved with minari.MinariDataset.iterate_episodes(). This method is a generator that iterates over minari.EpisodeData episodes from minari.MinariDataset. Specific indices can be also provided. For example:

-
import minari
+
import minari
 
 dataset = minari.load_dataset("D4RL/door/human-v2")
 episodes_generator = dataset.iterate_episodes(episode_indices=[1, 2, 0])
@@ -937,7 +937,7 @@ 

Sampling Episodesminari.MinariDataset dataset itself is iterable:.

-
import minari
+
import minari
 
 dataset = minari.load_dataset("D4RL/door/human-v2")
 
@@ -948,7 +948,7 @@ 

Sampling Episodes

Filter Episodes

The episodes in the dataset can be filtered before sampling. This is done with a custom conditional callable passed to minari.MinariDataset.filter_episodes(). The input to the conditional callable is an minari.EpisodeData and the return value must be True if you want to keep the episode or False otherwise. The method will return a new minari.MinariDataset:

-
import minari
+
import minari
 
 dataset = minari.load_dataset("D4RL/door/human-v2")
 
@@ -969,7 +969,7 @@ 

Filter Episodes

Split Dataset

Minari provides another utility function to divide a dataset into multiple datasets, minari.split_dataset()

-
import minari
+
import minari
 
 dataset = minari.load_dataset("D4RL/door/human-v2", download=True)
 
@@ -988,7 +988,7 @@ 

Split Dataset

Recover Environment

From a minari.MinariDataset object we can also recover the Gymnasium environment used to create the dataset, this can be useful for reproducibility or to generate more data for a specific dataset:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/door/human-v2')
 env = dataset.recover_environment()
@@ -1003,7 +1003,7 @@ 

Recover Environment

Note

There are some datasets that provide a different environment for evaluation purposes than the one used for collecting the data. This environment can be recovered by setting to True the eval_env argument:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/door/human-v2')
 eval_env = dataset.recover_environment(eval_env=True)
@@ -1038,8 +1038,8 @@ 

Create Minari DatasetCollecting Data

Minari can abstract the data collection process. This is achieved by using the minari.DataCollector wrapper which stores the environments stepping data in internal memory buffers before saving the dataset into disk. The minari.DataCollector wrapper can also perform caching by scheduling the amount of episodes or steps that are stored in-memory before saving the data in a temporary Minari dataset file . This wrapper also computes relevant metadata of the dataset while collecting the data.

The wrapper is very simple to initialize:

-
from minari import DataCollector
-import gymnasium as gym
+
from minari import DataCollector
+import gymnasium as gym
 
 env = gym.make('CartPole-v1')
 env = DataCollector(env, record_infos=True)
@@ -1052,9 +1052,9 @@ 

Save Datasetminari.DataCollector to record the data that will comprise the dataset. This is as simple as just looping through the Gymansium MDP API. For our example we will loop through 100 episodes of the 'CartPole-v1' environment with a random policy.

Finally, we need to create the Minari dataset and give it a name id. This is done by calling the minari.DataCollector.create_dataset() Minari function which will move the temporary data recorded in the minari.DataCollector environment to a permanent location in the local Minari root path with the Minari dataset standard structure.

Extending the code example for the 'CartPole-v1' environment we can create the Minari dataset as follows:

-
import minari
-import gymnasium as gym
-from minari import DataCollector
+
import minari
+import gymnasium as gym
+from minari import DataCollector
 
 env = gym.make('CartPole-v1')
 env = DataCollector(env, record_infos=True)
@@ -1101,9 +1101,9 @@ 

Save Dataset

When collecting data with the minari.DataCollector wrapper, the recorded data is saved into temporary files and it won’t be permanently saved on disk until the DataCollector.create_dataset() function is called. To prevent losing data for large datasets, it is recommended to create the dataset during data collection and append the data to it using DataCollector.add_to_dataset().

Continuing the 'CartPole-v1' example we can checkpoint the newly created Minari dataset every 10 episodes as follows:

-
import minari
-import gymnasium as gym
-from minari import DataCollector
+
import minari
+import gymnasium as gym
+from minari import DataCollector
 
 env = gym.make('CartPole-v1')
 env = DataCollector(env, record_infos=True)
diff --git a/main/content/dataset_standards/index.html b/main/content/dataset_standards/index.html
index 5f0f7909..d8bc5144 100644
--- a/main/content/dataset_standards/index.html
+++ b/main/content/dataset_standards/index.html
@@ -13,7 +13,7 @@
 
     
         Dataset Standards - Minari Documentation
-      
+      
     
     
     
@@ -974,7 +974,7 @@ 

Supported Spaces

EpisodeData Structure

A Minari dataset is encapsulated in the MinariDataset class which allows for iterating and sampling through episodes which are defined as EpisodeData data class. Take the following example where we load the D4RL/door/human-v2 dataset and randomly sample 10 episodes:

-
import minari
+
import minari
 dataset = minari.load_dataset("D4RL/door/human-v2", download=True)
 sampled_episodes = dataset.sample_episodes(10)
 
diff --git a/main/content/minari_cli/index.html b/main/content/minari_cli/index.html index 3819aaaf..174f2bd7 100644 --- a/main/content/minari_cli/index.html +++ b/main/content/minari_cli/index.html @@ -13,7 +13,7 @@ Minari CLI - Minari Documentation - + diff --git a/main/datasets/D4RL/antmaze/index.html b/main/datasets/D4RL/antmaze/index.html index d2f569e0..f221d4b3 100644 --- a/main/datasets/D4RL/antmaze/index.html +++ b/main/datasets/D4RL/antmaze/index.html @@ -13,7 +13,7 @@ Ant Maze - Minari Documentation - + diff --git a/main/datasets/D4RL/antmaze/large-diverse-v1/index.html b/main/datasets/D4RL/antmaze/large-diverse-v1/index.html index 555e367a..bfdd2e6b 100644 --- a/main/datasets/D4RL/antmaze/large-diverse-v1/index.html +++ b/main/datasets/D4RL/antmaze/large-diverse-v1/index.html @@ -13,7 +13,7 @@ Large-Diverse - Minari Documentation - + @@ -858,7 +858,7 @@

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/large-diverse-v1')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/large-diverse-v1')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/antmaze/large-play-v1/index.html b/main/datasets/D4RL/antmaze/large-play-v1/index.html
index bbf666d5..71cbce07 100644
--- a/main/datasets/D4RL/antmaze/large-play-v1/index.html
+++ b/main/datasets/D4RL/antmaze/large-play-v1/index.html
@@ -13,7 +13,7 @@
 
     
         Large-Play - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/large-play-v1')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/large-play-v1')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/antmaze/medium-diverse-v1/index.html b/main/datasets/D4RL/antmaze/medium-diverse-v1/index.html
index fb4db8b6..0b8c83c7 100644
--- a/main/datasets/D4RL/antmaze/medium-diverse-v1/index.html
+++ b/main/datasets/D4RL/antmaze/medium-diverse-v1/index.html
@@ -13,7 +13,7 @@
 
     
         Medium-Diverse - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/medium-diverse-v1')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/medium-diverse-v1')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/antmaze/medium-play-v1/index.html b/main/datasets/D4RL/antmaze/medium-play-v1/index.html
index 3954b651..32361584 100644
--- a/main/datasets/D4RL/antmaze/medium-play-v1/index.html
+++ b/main/datasets/D4RL/antmaze/medium-play-v1/index.html
@@ -13,7 +13,7 @@
 
     
         Medium-Play - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/medium-play-v1')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/medium-play-v1')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/antmaze/umaze-diverse-v1/index.html b/main/datasets/D4RL/antmaze/umaze-diverse-v1/index.html
index 7b08dcdc..43a347a5 100644
--- a/main/datasets/D4RL/antmaze/umaze-diverse-v1/index.html
+++ b/main/datasets/D4RL/antmaze/umaze-diverse-v1/index.html
@@ -13,7 +13,7 @@
 
     
         Umaze-Diverse - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/umaze-diverse-v1')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/umaze-diverse-v1')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/antmaze/umaze-v1/index.html b/main/datasets/D4RL/antmaze/umaze-v1/index.html
index 39890d98..919925c0 100644
--- a/main/datasets/D4RL/antmaze/umaze-v1/index.html
+++ b/main/datasets/D4RL/antmaze/umaze-v1/index.html
@@ -13,7 +13,7 @@
 
     
         Umaze - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/umaze-v1')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/antmaze/umaze-v1')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/door/cloned-v2/index.html b/main/datasets/D4RL/door/cloned-v2/index.html
index d8006642..38fc1f30 100644
--- a/main/datasets/D4RL/door/cloned-v2/index.html
+++ b/main/datasets/D4RL/door/cloned-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Cloned - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/door/cloned-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/door/cloned-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/door/expert-v2/index.html b/main/datasets/D4RL/door/expert-v2/index.html
index 799ca3f3..9c2f7a92 100644
--- a/main/datasets/D4RL/door/expert-v2/index.html
+++ b/main/datasets/D4RL/door/expert-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Expert - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/door/expert-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/door/expert-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/door/human-v2/index.html b/main/datasets/D4RL/door/human-v2/index.html
index 0a525456..410051c3 100644
--- a/main/datasets/D4RL/door/human-v2/index.html
+++ b/main/datasets/D4RL/door/human-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Human - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/door/human-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/door/human-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/door/index.html b/main/datasets/D4RL/door/index.html
index 9bf34b0e..94a663b4 100644
--- a/main/datasets/D4RL/door/index.html
+++ b/main/datasets/D4RL/door/index.html
@@ -13,7 +13,7 @@
 
     
         Door - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/D4RL/hammer/cloned-v2/index.html b/main/datasets/D4RL/hammer/cloned-v2/index.html
index 3e171bc4..0cc6a650 100644
--- a/main/datasets/D4RL/hammer/cloned-v2/index.html
+++ b/main/datasets/D4RL/hammer/cloned-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Cloned - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/hammer/cloned-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/hammer/cloned-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/hammer/expert-v2/index.html b/main/datasets/D4RL/hammer/expert-v2/index.html
index 0c55efb9..c9982c95 100644
--- a/main/datasets/D4RL/hammer/expert-v2/index.html
+++ b/main/datasets/D4RL/hammer/expert-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Expert - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/hammer/expert-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/hammer/expert-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/hammer/human-v2/index.html b/main/datasets/D4RL/hammer/human-v2/index.html
index ce606690..425d14e4 100644
--- a/main/datasets/D4RL/hammer/human-v2/index.html
+++ b/main/datasets/D4RL/hammer/human-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Human - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/hammer/human-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/hammer/human-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/hammer/index.html b/main/datasets/D4RL/hammer/index.html
index ff1e8cb7..103eb318 100644
--- a/main/datasets/D4RL/hammer/index.html
+++ b/main/datasets/D4RL/hammer/index.html
@@ -13,7 +13,7 @@
 
     
         Hammer - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/D4RL/index.html b/main/datasets/D4RL/index.html
index a20b9909..7e0e688a 100644
--- a/main/datasets/D4RL/index.html
+++ b/main/datasets/D4RL/index.html
@@ -13,7 +13,7 @@
 
     
         D4RL - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/D4RL/kitchen/complete-v2/index.html b/main/datasets/D4RL/kitchen/complete-v2/index.html
index d58831da..8833dde3 100644
--- a/main/datasets/D4RL/kitchen/complete-v2/index.html
+++ b/main/datasets/D4RL/kitchen/complete-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Complete - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/kitchen/complete-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/kitchen/complete-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/kitchen/index.html b/main/datasets/D4RL/kitchen/index.html
index 28a033a9..f38a6391 100644
--- a/main/datasets/D4RL/kitchen/index.html
+++ b/main/datasets/D4RL/kitchen/index.html
@@ -13,7 +13,7 @@
 
     
         Kitchen - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/D4RL/kitchen/mixed-v2/index.html b/main/datasets/D4RL/kitchen/mixed-v2/index.html
index 23faa710..6269dc2f 100644
--- a/main/datasets/D4RL/kitchen/mixed-v2/index.html
+++ b/main/datasets/D4RL/kitchen/mixed-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Mixed - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/kitchen/mixed-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/kitchen/mixed-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/kitchen/partial-v2/index.html b/main/datasets/D4RL/kitchen/partial-v2/index.html
index 474ab016..5e4a8dd9 100644
--- a/main/datasets/D4RL/kitchen/partial-v2/index.html
+++ b/main/datasets/D4RL/kitchen/partial-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Partial - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/kitchen/partial-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/kitchen/partial-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/minigrid/fourrooms-random-v0/index.html b/main/datasets/D4RL/minigrid/fourrooms-random-v0/index.html
index da467092..9ad4d1af 100644
--- a/main/datasets/D4RL/minigrid/fourrooms-random-v0/index.html
+++ b/main/datasets/D4RL/minigrid/fourrooms-random-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Fourrooms-Random - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/minigrid/fourrooms-random-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function FourRoomsEnv._gen_mission at 0x7f9633d2c040>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function FourRoomsEnv._gen_mission at 0x7f43c40ec040>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/minigrid/fourrooms-random-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/minigrid/fourrooms-v0/index.html b/main/datasets/D4RL/minigrid/fourrooms-v0/index.html
index 5cd0b7ef..037f3f2b 100644
--- a/main/datasets/D4RL/minigrid/fourrooms-v0/index.html
+++ b/main/datasets/D4RL/minigrid/fourrooms-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Fourrooms - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/minigrid/fourrooms-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function FourRoomsEnv._gen_mission at 0x7f0aa27838b0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function FourRoomsEnv._gen_mission at 0x7f41cfbc38b0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/minigrid/fourrooms-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/minigrid/index.html b/main/datasets/D4RL/minigrid/index.html
index f981ac39..00f60d4e 100644
--- a/main/datasets/D4RL/minigrid/index.html
+++ b/main/datasets/D4RL/minigrid/index.html
@@ -13,7 +13,7 @@
 
     
         MiniGrid - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/D4RL/pen/cloned-v2/index.html b/main/datasets/D4RL/pen/cloned-v2/index.html
index a6604311..60d674b5 100644
--- a/main/datasets/D4RL/pen/cloned-v2/index.html
+++ b/main/datasets/D4RL/pen/cloned-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Cloned - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pen/cloned-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pen/cloned-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/pen/expert-v2/index.html b/main/datasets/D4RL/pen/expert-v2/index.html
index 3a973d61..511f83b1 100644
--- a/main/datasets/D4RL/pen/expert-v2/index.html
+++ b/main/datasets/D4RL/pen/expert-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Expert - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pen/expert-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pen/expert-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/pen/human-v2/index.html b/main/datasets/D4RL/pen/human-v2/index.html
index e1e10347..72497d2a 100644
--- a/main/datasets/D4RL/pen/human-v2/index.html
+++ b/main/datasets/D4RL/pen/human-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Human - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pen/human-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pen/human-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/pen/index.html b/main/datasets/D4RL/pen/index.html
index 2540f09e..98f12d5f 100644
--- a/main/datasets/D4RL/pen/index.html
+++ b/main/datasets/D4RL/pen/index.html
@@ -13,7 +13,7 @@
 
     
         Pen - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/D4RL/pointmaze/index.html b/main/datasets/D4RL/pointmaze/index.html
index a55f2846..d85ab954 100644
--- a/main/datasets/D4RL/pointmaze/index.html
+++ b/main/datasets/D4RL/pointmaze/index.html
@@ -13,7 +13,7 @@
 
     
         Point Maze - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/D4RL/pointmaze/large-dense-v2/index.html b/main/datasets/D4RL/pointmaze/large-dense-v2/index.html
index 55fd6eb0..bc87ae0b 100644
--- a/main/datasets/D4RL/pointmaze/large-dense-v2/index.html
+++ b/main/datasets/D4RL/pointmaze/large-dense-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Large-Dense - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/large-dense-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/large-dense-v2')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/pointmaze/large-v2/index.html b/main/datasets/D4RL/pointmaze/large-v2/index.html
index 7b34e0f4..dfef4931 100644
--- a/main/datasets/D4RL/pointmaze/large-v2/index.html
+++ b/main/datasets/D4RL/pointmaze/large-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Large - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/large-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/large-v2')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/pointmaze/medium-dense-v2/index.html b/main/datasets/D4RL/pointmaze/medium-dense-v2/index.html
index a6588e47..e0db88e2 100644
--- a/main/datasets/D4RL/pointmaze/medium-dense-v2/index.html
+++ b/main/datasets/D4RL/pointmaze/medium-dense-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Medium-Dense - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/medium-dense-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/medium-dense-v2')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/pointmaze/medium-v2/index.html b/main/datasets/D4RL/pointmaze/medium-v2/index.html
index d8e444b6..61554d50 100644
--- a/main/datasets/D4RL/pointmaze/medium-v2/index.html
+++ b/main/datasets/D4RL/pointmaze/medium-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Medium - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/medium-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/medium-v2')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/pointmaze/open-dense-v2/index.html b/main/datasets/D4RL/pointmaze/open-dense-v2/index.html
index 106038de..30fc345f 100644
--- a/main/datasets/D4RL/pointmaze/open-dense-v2/index.html
+++ b/main/datasets/D4RL/pointmaze/open-dense-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Open-Dense - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/open-dense-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/open-dense-v2')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/pointmaze/open-v2/index.html b/main/datasets/D4RL/pointmaze/open-v2/index.html
index e9a29675..7b26da0b 100644
--- a/main/datasets/D4RL/pointmaze/open-v2/index.html
+++ b/main/datasets/D4RL/pointmaze/open-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Open - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/open-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/open-v2')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/pointmaze/umaze-dense-v2/index.html b/main/datasets/D4RL/pointmaze/umaze-dense-v2/index.html
index 581c65a2..671d67f7 100644
--- a/main/datasets/D4RL/pointmaze/umaze-dense-v2/index.html
+++ b/main/datasets/D4RL/pointmaze/umaze-dense-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Umaze-Dense - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/umaze-dense-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/umaze-dense-v2')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/pointmaze/umaze-v2/index.html b/main/datasets/D4RL/pointmaze/umaze-v2/index.html
index 56d02a4f..7e5299aa 100644
--- a/main/datasets/D4RL/pointmaze/umaze-v2/index.html
+++ b/main/datasets/D4RL/pointmaze/umaze-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Umaze - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/umaze-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/pointmaze/umaze-v2')
 eval_env  = dataset.recover_environment(eval_env=True)
diff --git a/main/datasets/D4RL/relocate/cloned-v2/index.html b/main/datasets/D4RL/relocate/cloned-v2/index.html
index 3beaad4b..0edba389 100644
--- a/main/datasets/D4RL/relocate/cloned-v2/index.html
+++ b/main/datasets/D4RL/relocate/cloned-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Cloned - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/relocate/cloned-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/relocate/cloned-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/relocate/expert-v2/index.html b/main/datasets/D4RL/relocate/expert-v2/index.html
index db928912..52d249bf 100644
--- a/main/datasets/D4RL/relocate/expert-v2/index.html
+++ b/main/datasets/D4RL/relocate/expert-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Expert - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/relocate/expert-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/relocate/expert-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/relocate/human-v2/index.html b/main/datasets/D4RL/relocate/human-v2/index.html
index 73710403..697c3437 100644
--- a/main/datasets/D4RL/relocate/human-v2/index.html
+++ b/main/datasets/D4RL/relocate/human-v2/index.html
@@ -13,7 +13,7 @@
 
     
         Human - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/relocate/human-v2')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('D4RL/relocate/human-v2')
 env  = dataset.recover_environment()
diff --git a/main/datasets/D4RL/relocate/index.html b/main/datasets/D4RL/relocate/index.html
index 764decd0..7cbd3fc2 100644
--- a/main/datasets/D4RL/relocate/index.html
+++ b/main/datasets/D4RL/relocate/index.html
@@ -13,7 +13,7 @@
 
     
         Relocate - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-ActionObjDoor/index.html b/main/datasets/minigrid/BabyAI-ActionObjDoor/index.html
index 0a683fab..904b2067 100644
--- a/main/datasets/minigrid/BabyAI-ActionObjDoor/index.html
+++ b/main/datasets/minigrid/BabyAI-ActionObjDoor/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI ActionObjDoor - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0/index.html
index 6c1d09be..3ac5fac0 100644
--- a/main/datasets/minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (19, 19, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2e134c8ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (19, 19, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa85cf48ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-ActionObjDoor/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-ActionObjDoor/optimal-v0/index.html
index 52311a8f..13b6eb81 100644
--- a/main/datasets/minigrid/BabyAI-ActionObjDoor/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-ActionObjDoor/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-ActionObjDoor/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f365f9c7c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f38f2327c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-ActionObjDoor/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/index.html b/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/index.html
index 13bc5921..8b05b5ab 100644
--- a/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/index.html
+++ b/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI BlockedUnlockPickup - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0/index.html
index 0fffd421..874a12ed 100644
--- a/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (11, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f465c7cad30>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (11, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4f1c3cad30>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-v0/index.html
index 1812d2a2..1bcacb74 100644
--- a/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BlockedUnlockPickup/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f00ae429dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f3b47bc9dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BlockedUnlockPickup/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-BossLevel/index.html b/main/datasets/minigrid/BabyAI-BossLevel/index.html
index 2ee9b3a7..757be92a 100644
--- a/main/datasets/minigrid/BabyAI-BossLevel/index.html
+++ b/main/datasets/minigrid/BabyAI-BossLevel/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI BossLevel - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-BossLevel/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-BossLevel/optimal-fullobs-v0/index.html
index fdc05ec2..df6e896b 100644
--- a/main/datasets/minigrid/BabyAI-BossLevel/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-BossLevel/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BossLevel/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f367f947dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc9b3f87dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BossLevel/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-BossLevel/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-BossLevel/optimal-v0/index.html
index 2688fa9a..af41ff6c 100644
--- a/main/datasets/minigrid/BabyAI-BossLevel/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-BossLevel/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BossLevel/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f99c1887b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc725187b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BossLevel/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/index.html b/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/index.html
index 279f53f3..dbdb085a 100644
--- a/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/index.html
+++ b/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI BossLevelNoUnlock - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0/index.html
index 26b9ac83..e8681a8c 100644
--- a/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc8f5789ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc42ab49ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-v0/index.html
index 9fa92aa2..c19126ba 100644
--- a/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BossLevelNoUnlock/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa85ed28dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f96b48e8dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-BossLevelNoUnlock/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-FindObjS5/index.html b/main/datasets/minigrid/BabyAI-FindObjS5/index.html
index 95eacf10..80e7e81d 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS5/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS5/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI FindObjS5 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-FindObjS5/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-FindObjS5/optimal-fullobs-v0/index.html
index 4f019889..63de6e31 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS5/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS5/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS5/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (13, 13, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7faf39987dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (13, 13, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5ae04a7dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS5/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-FindObjS5/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-FindObjS5/optimal-v0/index.html
index b389516b..7c9d0cc9 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS5/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS5/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS5/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f760f187b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe52d4e7b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS5/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-FindObjS6/index.html b/main/datasets/minigrid/BabyAI-FindObjS6/index.html
index 62b9cf72..0a33a6b5 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS6/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS6/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI FindObjS6 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-FindObjS6/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-FindObjS6/optimal-fullobs-v0/index.html
index 3c7b5268..3ac0033d 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS6/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS6/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS6/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f67b7f27dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f31a4827dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS6/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-FindObjS6/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-FindObjS6/optimal-v0/index.html
index ac13fda7..8b61f4da 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS6/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS6/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS6/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0d21507b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd2b9ea7b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS6/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-FindObjS7/index.html b/main/datasets/minigrid/BabyAI-FindObjS7/index.html
index 90959e6d..b50519c0 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS7/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS7/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI FindObjS7 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-FindObjS7/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-FindObjS7/optimal-fullobs-v0/index.html
index dd986eca..80b2175a 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS7/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS7/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS7/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (19, 19, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fee9ca27dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (19, 19, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fad21507dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS7/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-FindObjS7/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-FindObjS7/optimal-v0/index.html
index a06613a2..7815418d 100644
--- a/main/datasets/minigrid/BabyAI-FindObjS7/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-FindObjS7/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS7/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5877fc8b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fca67487b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-FindObjS7/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoTo/index.html b/main/datasets/minigrid/BabyAI-GoTo/index.html
index 2b5a634c..3b0f2dcd 100644
--- a/main/datasets/minigrid/BabyAI-GoTo/index.html
+++ b/main/datasets/minigrid/BabyAI-GoTo/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoTo - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoTo/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoTo/optimal-fullobs-v0/index.html
index b7338b46..ac01c8b5 100644
--- a/main/datasets/minigrid/BabyAI-GoTo/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoTo/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoTo/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f28b8386c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6434e86c10>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoTo/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoTo/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoTo/optimal-v0/index.html
index ed33ac70..dc3dd729 100644
--- a/main/datasets/minigrid/BabyAI-GoTo/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoTo/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoTo/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa82b585a60>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe97d705a60>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoTo/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToDoor/index.html b/main/datasets/minigrid/BabyAI-GoToDoor/index.html
index 3b5f236e..37a41079 100644
--- a/main/datasets/minigrid/BabyAI-GoToDoor/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToDoor/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToDoor - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToDoor/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToDoor/optimal-fullobs-v0/index.html
index 37762395..83961c13 100644
--- a/main/datasets/minigrid/BabyAI-GoToDoor/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToDoor/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (19, 19, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2084266dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (19, 19, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe4031c6dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToDoor/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToDoor/optimal-v0/index.html
index 4d339a45..fbd15e28 100644
--- a/main/datasets/minigrid/BabyAI-GoToDoor/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToDoor/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToDoor/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9819027b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe962d47b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToDoor/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocal/index.html b/main/datasets/minigrid/BabyAI-GoToLocal/index.html
index e1fb623e..198bf5a2 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocal/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocal/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocal - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocal/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocal/optimal-fullobs-v0/index.html
index dfb852e4..8239f12c 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocal/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocal/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocal/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fde6e2a7dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4880447dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocal/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocal/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocal/optimal-v0/index.html
index 99a3ded9..1603b656 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocal/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocal/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocal/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f15151c7b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f93288a7b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocal/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS5N2/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS5N2/index.html
index 0e42ac20..d76768cd 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS5N2/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS5N2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS5N2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0/index.html
index 391279c9..2c2470d8 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (5, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f698a589ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (5, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc8968c9ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-v0/index.html
index d6856bb1..a74a3036 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS5N2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f3749b87c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7a3a427c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS5N2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N2/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N2/index.html
index 36c5d13e..d71003bf 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N2/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS6N2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0/index.html
index 3150a10b..153fd7be 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (6, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f3b43e69ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (6, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe4f6789ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-v0/index.html
index 73a03c21..c7922428 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5b40627c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9a3bd87c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N3/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N3/index.html
index 78a49f3d..29c214a2 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N3/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N3/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS6N3 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0/index.html
index 5901250f..16cd9a4c 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (6, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8e78449ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (6, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f505cf89ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-v0/index.html
index 961aa0c6..8585384e 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N3/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff435ac7c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f229b2a7c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N3/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N4/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N4/index.html
index 166d23a0..933a3eaa 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N4/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N4/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS6N4 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0/index.html
index 10584509..8ac71b71 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (6, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff3708a9ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (6, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f61f9289ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-v0/index.html
index f2787404..9b2753dd 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N4/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f783b4c7c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc7f9507c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS6N4/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS7N4/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS7N4/index.html
index 99cb7282..721b846e 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS7N4/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS7N4/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS7N4 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0/index.html
index b759bb56..af050e48 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb5adaa9ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7f18f49ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-v0/index.html
index 5c29b140..5ef1cbd1 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS7N4/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7f92227c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2da2ce7c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS7N4/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS7N5/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS7N5/index.html
index 9f600e26..ca562da9 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS7N5/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS7N5/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS7N5 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0/index.html
index ebad449f..af88a446 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4f3ae29ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f251ac89ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-v0/index.html
index f8f12f55..3c3f716b 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS7N5/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2f8b947c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5b70107c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS7N5/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N2/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N2/index.html
index 097e2936..59026ae5 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N2/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS8N2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0/index.html
index 806effb6..0cc7b44f 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f1917f29ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f314daa9ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-v0/index.html
index bfd9875e..0c024d0f 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd5f6f27c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7feaa30a7c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N3/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N3/index.html
index 4a784d62..c8664424 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N3/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N3/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS8N3 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0/index.html
index fec77f06..c0849cc7 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8010349ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb319469ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-v0/index.html
index ee26d01f..c6d8d083 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N3/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f49dc9c7c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2d1d527c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N3/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N4/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N4/index.html
index 2275b50a..f8de6620 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N4/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N4/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS8N4 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0/index.html
index 8cf72759..6317f761 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f62d4ae9ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f11dad09ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-v0/index.html
index 0e76ab12..38d3230c 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N4/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9f13827c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa1888c7c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N4/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N5/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N5/index.html
index 9f1186ca..c3974099 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N5/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N5/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS8N5 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0/index.html
index 2882bb3e..8e8c56e0 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f25bb8a9ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f228bd49ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-v0/index.html
index fda5d8af..3c0e73fa 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N5/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5dc48e7c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f41e5a27c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N5/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N6/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N6/index.html
index 01ab4605..62ff3d1a 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N6/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N6/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS8N6 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0/index.html
index 8dcc608c..1ee27f6c 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7efc65a29ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0adb789ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-v0/index.html
index 20c9693e..f3deaa60 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N6/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f42fd187c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7b39447c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N6/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N7/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N7/index.html
index 0e593f2b..2b403f98 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N7/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N7/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToLocalS8N7 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0/index.html
index 12aedfb0..2fc38fea 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb7891c9ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0762089ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-v0/index.html
index 24187752..29ba3575 100644
--- a/main/datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N7/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f50a1aa7c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc532206c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToLocalS8N7/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObj/index.html b/main/datasets/minigrid/BabyAI-GoToObj/index.html
index 336da46a..e19617a7 100644
--- a/main/datasets/minigrid/BabyAI-GoToObj/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObj/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObj - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObj/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObj/optimal-fullobs-v0/index.html
index 32e84f8a..a199596f 100644
--- a/main/datasets/minigrid/BabyAI-GoToObj/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObj/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObj/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f16b37c6c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f961a0a6c10>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObj/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObj/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObj/optimal-v0/index.html
index bb6f6e25..f9fa69d0 100644
--- a/main/datasets/minigrid/BabyAI-GoToObj/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObj/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObj/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2040bc4b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9d3a044b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObj/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjDoor/index.html b/main/datasets/minigrid/BabyAI-GoToObjDoor/index.html
index 34721ff0..bccef9da 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjDoor/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjDoor/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjDoor - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0/index.html
index c177db0a..d0cb60da 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0d8ca28dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f60a5528dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjDoor/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjDoor/optimal-v0/index.html
index 542fa493..e63387ce 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjDoor/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjDoor/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjDoor/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fccb5e88b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6306728b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjDoor/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMaze/index.html b/main/datasets/minigrid/BabyAI-GoToObjMaze/index.html
index 24724db8..82e63e8e 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMaze/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMaze/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjMaze - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0/index.html
index 507a0db1..edbd92a9 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7082f08dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9211f28dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMaze/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMaze/optimal-v0/index.html
index 8bc8099d..aa8150d0 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMaze/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMaze/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMaze/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ffbb8a47b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8c6ab87b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMaze/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/index.html
index a2c91ea6..70593798 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjMazeOpen - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0/index.html
index ac3e4a2e..71f58765 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb9babc9ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6af6b29ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-v0/index.html
index 50ad1311..5ec4542a 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeOpen/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7449846c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fbbf6466c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeOpen/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS4/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS4/index.html
index 8c775d74..ee026c17 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS4/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS4/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjMazeS4 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0/index.html
index ca075875..dd093aab 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (10, 10, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa8ae028ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (10, 10, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fdf8b548ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-v0/index.html
index aa370c5a..4aea0116 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS4/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f85ef947c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff84a247c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS4/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/index.html
index b0242046..443fefc2 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjMazeS4R2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0/index.html
index cfe0292b..3621aac3 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f884c62aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6f9572aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0/index.html
index 41c9c2de..1787e2c1 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f643d325c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7c99545c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS5/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS5/index.html
index 49375e0b..48e66416 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS5/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS5/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjMazeS5 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0/index.html
index a3e39caf..fab48a48 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (13, 13, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9f7d4a8ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (13, 13, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8817648ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-v0/index.html
index c8a461d7..139a6a4f 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS5/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f07219c7c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe334787c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS5/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS6/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS6/index.html
index 7ca315a9..545632ea 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS6/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS6/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjMazeS6 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0/index.html
index 227bcfc9..f214cc9a 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7ce7148ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7c276e8ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-v0/index.html
index 76683f86..cc7007db 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS6/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2a6ab47c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f424c987c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS6/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS7/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS7/index.html
index 805b7da3..1f115933 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS7/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS7/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjMazeS7 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0/index.html
index 6ec15b7e..ac7b4985 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (19, 19, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2cc1988ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (19, 19, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f99308a8ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-v0/index.html
index f250f89c..ef6bce39 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS7/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5108a67c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f13a0587c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjMazeS7/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjS4/index.html b/main/datasets/minigrid/BabyAI-GoToObjS4/index.html
index 985fa394..fb8e8b9f 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjS4/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjS4/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjS4 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0/index.html
index be786883..fb904025 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (4, 4, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff8e2406dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (4, 4, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7bc9c27dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjS4/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjS4/optimal-v0/index.html
index 0a70e862..52a61e9b 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjS4/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjS4/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjS4/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6950fc6b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fca4a466b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjS4/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjS6/index.html b/main/datasets/minigrid/BabyAI-GoToObjS6/index.html
index 5916e9cd..02f9c6fe 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjS6/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjS6/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToObjS6 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0/index.html
index b0e8d36c..1ff83c81 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (4, 4, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f703e047dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (4, 4, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd2478a7dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToObjS6/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToObjS6/optimal-v0/index.html
index 1ccbf149..97497fbf 100644
--- a/main/datasets/minigrid/BabyAI-GoToObjS6/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToObjS6/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjS6/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f1b04666b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f56fe886b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToObjS6/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToOpen/index.html b/main/datasets/minigrid/BabyAI-GoToOpen/index.html
index dab40512..9bf6fbd9 100644
--- a/main/datasets/minigrid/BabyAI-GoToOpen/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToOpen/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToOpen - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToOpen/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToOpen/optimal-fullobs-v0/index.html
index 5a4dd82d..6c194f3c 100644
--- a/main/datasets/minigrid/BabyAI-GoToOpen/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToOpen/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToOpen/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0784908dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ffad1f47dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToOpen/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToOpen/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToOpen/optimal-v0/index.html
index 4168aa7e..6777c521 100644
--- a/main/datasets/minigrid/BabyAI-GoToOpen/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToOpen/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToOpen/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fda1a5c6b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fbf8f306b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToOpen/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBall/index.html b/main/datasets/minigrid/BabyAI-GoToRedBall/index.html
index 122d8e35..a28d057a 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBall/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBall/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToRedBall - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0/index.html
index 5985bc8a..f9ba3f07 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f956fd48dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fbe7be28dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBall/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToRedBall/optimal-v0/index.html
index f411d7ed..a636055c 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBall/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBall/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBall/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb2dca48b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0bdc6c8b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBall/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBallGrey/index.html b/main/datasets/minigrid/BabyAI-GoToRedBallGrey/index.html
index 09fdf638..2f17296f 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBallGrey/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBallGrey/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToRedBallGrey - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0/index.html
index 61106ae7..45e50813 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7effac429ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f738f0c9ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-v0/index.html
index 3ddae824..2a3bc0cb 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBallGrey/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f79f27c6c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa1539c6c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBallGrey/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/index.html b/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/index.html
index 34bf5f07..d9a0ffc2 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToRedBallNoDists - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0/index.html
index 569d6a50..a2f39012 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6a2e28aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f112eb4aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-v0/index.html
index 2d1921c5..5544434e 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBallNoDists/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc89f328dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f520e788dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBallNoDists/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBlueBall/index.html b/main/datasets/minigrid/BabyAI-GoToRedBlueBall/index.html
index c11c9352..22a14b74 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBlueBall/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBlueBall/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToRedBlueBall - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0/index.html
index 1eb6fc1c..5c39554f 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fefa57c9ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd67c389ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-v0/index.html
index 38ef9fde..a3424a34 100644
--- a/main/datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBlueBall/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb53b986c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f82524e6c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToRedBlueBall/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToSeq/index.html b/main/datasets/minigrid/BabyAI-GoToSeq/index.html
index ae76c54c..01702931 100644
--- a/main/datasets/minigrid/BabyAI-GoToSeq/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToSeq/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToSeq - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToSeq/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToSeq/optimal-fullobs-v0/index.html
index 7cfd160c..2f278e7c 100644
--- a/main/datasets/minigrid/BabyAI-GoToSeq/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToSeq/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToSeq/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7efddb405c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f3c31106c10>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToSeq/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToSeq/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToSeq/optimal-v0/index.html
index 4f547f05..1f8ecaf2 100644
--- a/main/datasets/minigrid/BabyAI-GoToSeq/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToSeq/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToSeq/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc60d2e4b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc173f44b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToSeq/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToSeqS5R2/index.html b/main/datasets/minigrid/BabyAI-GoToSeqS5R2/index.html
index dc4d9046..5d2e8659 100644
--- a/main/datasets/minigrid/BabyAI-GoToSeqS5R2/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToSeqS5R2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI GoToSeqS5R2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0/index.html
index c7ca2158..921999ab 100644
--- a/main/datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 9, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7efe998e9dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 9, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff687e69dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-v0/index.html
index 96e17ecb..a054b362 100644
--- a/main/datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToSeqS5R2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5e81086b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f73f1186b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-GoToSeqS5R2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridor/index.html b/main/datasets/minigrid/BabyAI-KeyCorridor/index.html
index 1b59c1a1..1881b28b 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridor/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridor/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI KeyCorridor - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0/index.html
index 7b38adfb..e3513826 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd95a108dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8428108dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridor/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridor/optimal-v0/index.html
index 558009c0..420df53b 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridor/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridor/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridor/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f79de4c8b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f1e3de48b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridor/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/index.html
index f5793a30..e0ff991c 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI KeyCorridorS3R1 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0/index.html
index fdbc500a..ddf0648b 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 3, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0837b4aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 3, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4e290aaca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-v0/index.html
index 32187162..f00a2ec1 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R1/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f541c326c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4cb42a6c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R1/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/index.html
index 0f5fc7a4..b3c09df2 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI KeyCorridorS3R2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0/index.html
index 4797f57d..20610bc1 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc7a864aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7403f0aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-v0/index.html
index 56967c91..65b39316 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe8cbf06c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb52aac6c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/index.html
index b9b307b7..a66ddd08 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI KeyCorridorS3R3 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0/index.html
index 007b2c0f..3ecaa659 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7feb8b68aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f47814eaca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-v0/index.html
index 56212d39..934cf75c 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R3/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe91bbc6c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd05d6c6c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS3R3/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/index.html
index 19279b26..af4f38a6 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI KeyCorridorS4R3 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0/index.html
index c767028c..99562694 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (10, 10, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd28cc6aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (10, 10, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fcae76caca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-v0/index.html
index 41933e90..87387bf4 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS4R3/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe350f26c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb0373c6c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS4R3/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/index.html
index 4b75eb55..a591f4ef 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI KeyCorridorS5R3 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0/index.html
index 4c5af762..aa39ca48 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (13, 13, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f226f54aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (13, 13, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f31dcb4aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-v0/index.html
index 945e8916..b568b8c8 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS5R3/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f1fc88a6c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f51bf246c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS5R3/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/index.html
index 094cb2e2..b59ac6d9 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI KeyCorridorS6R3 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0/index.html
index 7d0879c2..48260c5e 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff04bfcaca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5aee38aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-v0/index.html
index c0156cd6..271bef01 100644
--- a/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS6R3/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7957446c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f35f7106c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-KeyCorridorS6R3/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/index.html b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/index.html
index 2614e5d8..bd089e5c 100644
--- a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/index.html
+++ b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI MoveTwoAcrossS5N2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0/index.html
index dd350dd2..a7621055 100644
--- a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb53e64aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f76792cbca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0/index.html
index 29faa97f..18221209 100644
--- a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0f32447dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7efdc9586dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/index.html b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/index.html
index 21da9a33..2734267d 100644
--- a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/index.html
+++ b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI MoveTwoAcrossS8N9 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0/index.html
index d8fe3238..ce4421bf 100644
--- a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (15, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6f3cd8aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (15, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fac0508bca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0/index.html
index 64261169..31253155 100644
--- a/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f92a3086dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f19c0ee6dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS12/index.html b/main/datasets/minigrid/BabyAI-OneRoomS12/index.html
index 7404c962..752dae80 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS12/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS12/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OneRoomS12 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0/index.html
index b78e4d90..e846cd89 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (12, 12, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8598f07dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (12, 12, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f13b27c7dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS12/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OneRoomS12/optimal-v0/index.html
index fc392147..bc4f750f 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS12/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS12/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS12/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f3566987b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7efd86f87b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS12/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS16/index.html b/main/datasets/minigrid/BabyAI-OneRoomS16/index.html
index 20a318b3..6bc61898 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS16/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS16/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OneRoomS16 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0/index.html
index 903f6230..ff40e7a3 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4640ac7dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5d0e806dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS16/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OneRoomS16/optimal-v0/index.html
index 9e03cbe2..4c099cc8 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS16/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS16/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS16/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6ff9327b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2c09927b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS16/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS20/index.html b/main/datasets/minigrid/BabyAI-OneRoomS20/index.html
index 1947fe22..3efdac76 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS20/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS20/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OneRoomS20 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0/index.html
index c73a059c..b788002d 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (20, 20, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd7e6b07dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (20, 20, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5991c67dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS20/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OneRoomS20/optimal-v0/index.html
index bc99dfff..ee23659e 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS20/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS20/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS20/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f97d8987b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8a1b0e7b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS20/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS8/index.html b/main/datasets/minigrid/BabyAI-OneRoomS8/index.html
index 8de07d8b..e826cb5a 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS8/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS8/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OneRoomS8 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0/index.html
index 6479e2f8..3379e25e 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff883227dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0af6bc7dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OneRoomS8/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OneRoomS8/optimal-v0/index.html
index cd2eca60..4a60894a 100644
--- a/main/datasets/minigrid/BabyAI-OneRoomS8/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OneRoomS8/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS8/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8f85307b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f70fed07b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OneRoomS8/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-Open/index.html b/main/datasets/minigrid/BabyAI-Open/index.html
index 3c049021..34c4e62e 100644
--- a/main/datasets/minigrid/BabyAI-Open/index.html
+++ b/main/datasets/minigrid/BabyAI-Open/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI Open - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-Open/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-Open/optimal-fullobs-v0/index.html
index 83138723..49fa4d8c 100644
--- a/main/datasets/minigrid/BabyAI-Open/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-Open/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Open/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fceb0e86c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2ea1ec6c10>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Open/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-Open/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-Open/optimal-v0/index.html
index c89ae61f..ae8e785b 100644
--- a/main/datasets/minigrid/BabyAI-Open/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-Open/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Open/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6a533c5a60>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6e4d185a60>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Open/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoor/index.html b/main/datasets/minigrid/BabyAI-OpenDoor/index.html
index 5ae39686..29b325a6 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoor/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoor/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenDoor - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenDoor/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoor/optimal-fullobs-v0/index.html
index e2eacfa1..4853af6e 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoor/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoor/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc2fe186dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff4219c6dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoor/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoor/optimal-v0/index.html
index 2d969d22..6a8ec438 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoor/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoor/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoor/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd88a787b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8620627b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoor/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorColor/index.html b/main/datasets/minigrid/BabyAI-OpenDoorColor/index.html
index 87a75e72..6b378494 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorColor/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorColor/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenDoorColor - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0/index.html
index c9764b6f..c48f0579 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5e58388ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f87999c8ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorColor/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorColor/optimal-v0/index.html
index ada51c59..452b717f 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorColor/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorColor/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorColor/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5f0d628c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fcc1ec48c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorColor/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorDebug/index.html b/main/datasets/minigrid/BabyAI-OpenDoorDebug/index.html
index 316e2df8..3d6035c0 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorDebug/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorDebug/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenDoorDebug - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0/index.html
index f654e133..ac907f1d 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5eba849ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe6bc3c8ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorDebug/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorDebug/optimal-v0/index.html
index cb480fc3..f00e6727 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorDebug/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorDebug/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorDebug/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4f6b467c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f42dd147c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorDebug/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorLoc/index.html b/main/datasets/minigrid/BabyAI-OpenDoorLoc/index.html
index 0411194e..50078e29 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorLoc/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorLoc/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenDoorLoc - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0/index.html
index 3bd31233..214f197c 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff3ba6c8dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f81566a8dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorLoc/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorLoc/optimal-v0/index.html
index 5d2e27a4..b1548168 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorLoc/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorLoc/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorLoc/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ffb4cf88b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9963268b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorLoc/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/index.html
index 84dc2356..fba81dea 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenDoorsOrderN2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0/index.html
index e3097a86..de41a839 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8c2994aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f49f6f8aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0/index.html
index dbc46b66..fa1bb4f6 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8eadf27dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa857447dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/index.html
index 77b2d731..b35d4c1d 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenDoorsOrderN2Debug - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0/index.html
index 4b87c3ed..2642628b 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4cc34aaca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc9d4b4aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0/index.html
index a175d109..a9766c9b 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa9c5b47ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fde898c7ca0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/index.html
index 830ef10c..cec7f103 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenDoorsOrderN4 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0/index.html
index f31f8517..b0e6c7e7 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f46de4eaca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0b1086aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0/index.html
index 7f71f846..e16d2dff 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f3427907dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4e89b27dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/index.html
index b0167fee..cd20460b 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenDoorsOrderN4Debug - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0/index.html
index ee077df8..67dced40 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0e320caca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0193dcaca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0/index.html
index 40b2d23b..30d025bb 100644
--- a/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7742d07ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd917787ca0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/index.html b/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/index.html
index 0c71d254..8c3b5567 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenRedBlueDoors - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0/index.html
index 13cfe6b0..52b4f68d 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7efcbee4aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f84a45caca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-v0/index.html
index bf361282..a122143b 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedBlueDoors/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9a08186dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f342faa6dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedBlueDoors/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/index.html b/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/index.html
index 8ef381e1..9f22783f 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenRedBlueDoorsDebug - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0/index.html
index bf419bff..b27677d8 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa02be8aca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7a8eceaca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0/index.html
index e5b77d6c..93ae2e6b 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f29fbf48ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa6e6b48ca0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenRedDoor/index.html b/main/datasets/minigrid/BabyAI-OpenRedDoor/index.html
index 22d04664..b6e086cd 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedDoor/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedDoor/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenRedDoor - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0/index.html
index ee3e7ab3..d890bf0f 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f1f89c48dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8beb9c8dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenRedDoor/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenRedDoor/optimal-v0/index.html
index 6b0549b2..9676456e 100644
--- a/main/datasets/minigrid/BabyAI-OpenRedDoor/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenRedDoor/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedDoor/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd3114a8b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fbc5dd08b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenRedDoor/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenTwoDoors/index.html b/main/datasets/minigrid/BabyAI-OpenTwoDoors/index.html
index 51659c21..4a93e4ec 100644
--- a/main/datasets/minigrid/BabyAI-OpenTwoDoors/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenTwoDoors/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI OpenTwoDoors - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0/index.html
index 0fcf118d..f24c29ec 100644
--- a/main/datasets/minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f90e6049dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc75b3c9dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-OpenTwoDoors/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-OpenTwoDoors/optimal-v0/index.html
index b044aa95..b939d6d0 100644
--- a/main/datasets/minigrid/BabyAI-OpenTwoDoors/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-OpenTwoDoors/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenTwoDoors/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7feb44f27c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f89fdf87c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-OpenTwoDoors/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-Pickup/index.html b/main/datasets/minigrid/BabyAI-Pickup/index.html
index ac09f0aa..a9cead53 100644
--- a/main/datasets/minigrid/BabyAI-Pickup/index.html
+++ b/main/datasets/minigrid/BabyAI-Pickup/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI Pickup - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-Pickup/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-Pickup/optimal-fullobs-v0/index.html
index df2e0451..497ae959 100644
--- a/main/datasets/minigrid/BabyAI-Pickup/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-Pickup/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Pickup/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc8d3c85c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f76ac245c10>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Pickup/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-Pickup/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-Pickup/optimal-v0/index.html
index f4b65a0c..cf5bbf45 100644
--- a/main/datasets/minigrid/BabyAI-Pickup/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-Pickup/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Pickup/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f62ae045b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fbe30dc6b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Pickup/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PickupAbove/index.html b/main/datasets/minigrid/BabyAI-PickupAbove/index.html
index 6f3434cd..0bec2441 100644
--- a/main/datasets/minigrid/BabyAI-PickupAbove/index.html
+++ b/main/datasets/minigrid/BabyAI-PickupAbove/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PickupAbove - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PickupAbove/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PickupAbove/optimal-fullobs-v0/index.html
index fff15e4a..8b5480d9 100644
--- a/main/datasets/minigrid/BabyAI-PickupAbove/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PickupAbove/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PickupAbove/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8935c48dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (16, 16, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2383988dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PickupAbove/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PickupAbove/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PickupAbove/optimal-v0/index.html
index c4f553f3..661683be 100644
--- a/main/datasets/minigrid/BabyAI-PickupAbove/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PickupAbove/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PickupAbove/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0c82e28b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb954ee8b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PickupAbove/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PickupLoc/index.html b/main/datasets/minigrid/BabyAI-PickupLoc/index.html
index 3bc93dc7..81b3c059 100644
--- a/main/datasets/minigrid/BabyAI-PickupLoc/index.html
+++ b/main/datasets/minigrid/BabyAI-PickupLoc/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PickupLoc - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PickupLoc/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PickupLoc/optimal-fullobs-v0/index.html
index a332ae99..70d1b0ae 100644
--- a/main/datasets/minigrid/BabyAI-PickupLoc/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PickupLoc/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PickupLoc/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f32e4787dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f7927347dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PickupLoc/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PickupLoc/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PickupLoc/optimal-v0/index.html
index e0fda97a..10595682 100644
--- a/main/datasets/minigrid/BabyAI-PickupLoc/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PickupLoc/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PickupLoc/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb919f27b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f51a96c7b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PickupLoc/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocal/index.html b/main/datasets/minigrid/BabyAI-PutNextLocal/index.html
index bef1f298..c157eb09 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocal/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocal/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PutNextLocal - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0/index.html
index 045eb391..cb0ce817 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8b2b4aadc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (8, 8, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8f44529dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocal/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextLocal/optimal-v0/index.html
index 624c9c3e..784c3b03 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocal/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocal/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocal/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8a5a187c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0c29cc7c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocal/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/index.html b/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/index.html
index 9273a5aa..79408739 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PutNextLocalS5N3 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0/index.html
index 9254ae98..d4bba51c 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (5, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f923a14bca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (5, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f210054bca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-v0/index.html
index dab51eb0..21a5e882 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocalS5N3/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f029a947dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fed1d947dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocalS5N3/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/index.html b/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/index.html
index 6ebd4e9e..480cf69c 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PutNextLocalS6N4 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0/index.html
index a93da1af..ddb7f882 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (6, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa0c5cabca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (6, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f446094bca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-v0/index.html
index 3646ff54..a0bb3031 100644
--- a/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocalS6N4/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2faa6c7dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f54d1b47dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextLocalS6N4/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS4N1/index.html b/main/datasets/minigrid/BabyAI-PutNextS4N1/index.html
index 95b8128f..ee034130 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS4N1/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS4N1/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PutNextS4N1 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0/index.html
index a5f498e8..053ab188 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 4, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5160389dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 4, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f13082e9dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS4N1/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS4N1/optimal-v0/index.html
index 30b9d2d7..803db865 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS4N1/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS4N1/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS4N1/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe428f48b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f9a8e3c7b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS4N1/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS5N1/index.html b/main/datasets/minigrid/BabyAI-PutNextS5N1/index.html
index 8a536ed4..498f3e66 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS5N1/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS5N1/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PutNextS5N1 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0/index.html
index 60227701..18a07c17 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f342ed09dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f17b0669dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS5N1/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS5N1/optimal-v0/index.html
index cf7561a4..06523371 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS5N1/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS5N1/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS5N1/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fed94067b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f3c93447b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS5N1/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS5N2/index.html b/main/datasets/minigrid/BabyAI-PutNextS5N2/index.html
index 56e889ec..ba302a18 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS5N2/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS5N2/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PutNextS5N2 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0/index.html
index 045ebfeb..ffe76865 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f69462a9dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (9, 5, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe84eae9dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS5N2/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS5N2/optimal-v0/index.html
index f87e049f..60dff1d5 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS5N2/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS5N2/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS5N2/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7efd7b247b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc79db87b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS5N2/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS6N3/index.html b/main/datasets/minigrid/BabyAI-PutNextS6N3/index.html
index 8f909efd..2fca3060 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS6N3/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS6N3/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PutNextS6N3 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0/index.html
index e6990e15..5322b044 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (11, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f09b7789dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (11, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f349ebc9dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS6N3/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS6N3/optimal-v0/index.html
index 5073df26..043c45fb 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS6N3/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS6N3/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS6N3/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fc85e9c7b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb514907b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS6N3/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS7N4/index.html b/main/datasets/minigrid/BabyAI-PutNextS7N4/index.html
index b4b17bdd..61b8eac7 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS7N4/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS7N4/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI PutNextS7N4 - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0/index.html
index f0359cff..fdc409dd 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (13, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f26f8b89dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (13, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0bb3669dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-PutNextS7N4/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-PutNextS7N4/optimal-v0/index.html
index 0bfb760c..61408e31 100644
--- a/main/datasets/minigrid/BabyAI-PutNextS7N4/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-PutNextS7N4/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS7N4/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f78d24c7b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0304bc7b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-PutNextS7N4/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-Synth/index.html b/main/datasets/minigrid/BabyAI-Synth/index.html
index 65b0ae9e..64c98cca 100644
--- a/main/datasets/minigrid/BabyAI-Synth/index.html
+++ b/main/datasets/minigrid/BabyAI-Synth/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI Synth - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-Synth/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-Synth/optimal-fullobs-v0/index.html
index 935aaa18..31104548 100644
--- a/main/datasets/minigrid/BabyAI-Synth/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-Synth/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Synth/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd69f847c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f38fb927c10>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Synth/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-Synth/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-Synth/optimal-v0/index.html
index 7886bb0b..b89f621f 100644
--- a/main/datasets/minigrid/BabyAI-Synth/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-Synth/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Synth/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4f4c584b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f0478684b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-Synth/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-SynthLoc/index.html b/main/datasets/minigrid/BabyAI-SynthLoc/index.html
index 90f07f52..271d26f4 100644
--- a/main/datasets/minigrid/BabyAI-SynthLoc/index.html
+++ b/main/datasets/minigrid/BabyAI-SynthLoc/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI SynthLoc - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-SynthLoc/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-SynthLoc/optimal-fullobs-v0/index.html
index c0354e1a..e0ab02cc 100644
--- a/main/datasets/minigrid/BabyAI-SynthLoc/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-SynthLoc/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-SynthLoc/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8b290a6dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f339aea6dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-SynthLoc/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-SynthLoc/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-SynthLoc/optimal-v0/index.html
index 29abd5da..6b1cd1a8 100644
--- a/main/datasets/minigrid/BabyAI-SynthLoc/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-SynthLoc/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-SynthLoc/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f28f3b47b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f77949c8b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-SynthLoc/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-SynthSeq/index.html b/main/datasets/minigrid/BabyAI-SynthSeq/index.html
index eb171822..347f6952 100644
--- a/main/datasets/minigrid/BabyAI-SynthSeq/index.html
+++ b/main/datasets/minigrid/BabyAI-SynthSeq/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI SynthSeq - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-SynthSeq/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-SynthSeq/optimal-fullobs-v0/index.html
index 5e9e154c..94c852f0 100644
--- a/main/datasets/minigrid/BabyAI-SynthSeq/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-SynthSeq/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-SynthSeq/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fea970e6dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa7b54c6dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-SynthSeq/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-SynthSeq/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-SynthSeq/optimal-v0/index.html
index b90bbfb4..3e78c878 100644
--- a/main/datasets/minigrid/BabyAI-SynthSeq/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-SynthSeq/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-SynthSeq/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f6d847c7b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ffa23348b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-SynthSeq/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnblockPickup/index.html b/main/datasets/minigrid/BabyAI-UnblockPickup/index.html
index 844378bd..8fd8bdd6 100644
--- a/main/datasets/minigrid/BabyAI-UnblockPickup/index.html
+++ b/main/datasets/minigrid/BabyAI-UnblockPickup/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI UnblockPickup - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0/index.html
index 2d10f947..23d421cf 100644
--- a/main/datasets/minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7ff9a5c88ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f3f7a928ca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnblockPickup/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-UnblockPickup/optimal-v0/index.html
index bf8ea007..1204ceb1 100644
--- a/main/datasets/minigrid/BabyAI-UnblockPickup/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnblockPickup/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnblockPickup/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fe2063c7c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fd4fe707c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnblockPickup/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnlockLocal/index.html b/main/datasets/minigrid/BabyAI-UnlockLocal/index.html
index ba0bbad2..2386e6a1 100644
--- a/main/datasets/minigrid/BabyAI-UnlockLocal/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockLocal/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI UnlockLocal - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0/index.html
index 6a375012..76427b5c 100644
--- a/main/datasets/minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fbd2dc48dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f4eb8b28dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnlockLocal/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-UnlockLocal/optimal-v0/index.html
index e6f12459..6162c75e 100644
--- a/main/datasets/minigrid/BabyAI-UnlockLocal/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockLocal/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockLocal/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f46af3c8b80>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f01cd929b80>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockLocal/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnlockLocalDist/index.html b/main/datasets/minigrid/BabyAI-UnlockLocalDist/index.html
index 2d7dae42..5df50080 100644
--- a/main/datasets/minigrid/BabyAI-UnlockLocalDist/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockLocalDist/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI UnlockLocalDist - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0/index.html
index 9af1a970..222c5304 100644
--- a/main/datasets/minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7faa1e9c9ca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (22, 22, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2610b4aca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnlockLocalDist/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-UnlockLocalDist/optimal-v0/index.html
index 1a2d2c18..17ccac5e 100644
--- a/main/datasets/minigrid/BabyAI-UnlockLocalDist/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockLocalDist/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockLocalDist/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8e11286c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f04c3126c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockLocalDist/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnlockPickup/index.html b/main/datasets/minigrid/BabyAI-UnlockPickup/index.html
index b5c140a0..4e71bd88 100644
--- a/main/datasets/minigrid/BabyAI-UnlockPickup/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockPickup/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI UnlockPickup - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0/index.html
index 03ecd09f..f077b30f 100644
--- a/main/datasets/minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (11, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fb109b49dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (11, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f701b1c9dc0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnlockPickup/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-UnlockPickup/optimal-v0/index.html
index 7260c96b..0c072b54 100644
--- a/main/datasets/minigrid/BabyAI-UnlockPickup/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockPickup/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockPickup/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fa816867c10>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f06aaa47c10>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockPickup/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnlockPickupDist/index.html b/main/datasets/minigrid/BabyAI-UnlockPickupDist/index.html
index 38ddd8a2..c1488777 100644
--- a/main/datasets/minigrid/BabyAI-UnlockPickupDist/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockPickupDist/index.html
@@ -13,7 +13,7 @@
 
     
         BabyAI UnlockPickupDist - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0/index.html b/main/datasets/minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0/index.html
index 05b5f2bb..9f375b0d 100644
--- a/main/datasets/minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal-Fullobs - Minari Documentation
-      
+      
     
     
     
@@ -859,7 +859,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0')
 env  = dataset.recover_environment()
@@ -877,7 +877,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (11, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f5d0958bca0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (11, 6, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f8f428aaca0>, None))

Action Space

Discrete(7)

@@ -916,7 +916,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/BabyAI-UnlockPickupDist/optimal-v0/index.html b/main/datasets/minigrid/BabyAI-UnlockPickupDist/optimal-v0/index.html
index 587f8895..a73e0569 100644
--- a/main/datasets/minigrid/BabyAI-UnlockPickupDist/optimal-v0/index.html
+++ b/main/datasets/minigrid/BabyAI-UnlockPickupDist/optimal-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Optimal - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockPickupDist/optimal-v0')
 env  = dataset.recover_environment()
@@ -876,7 +876,7 @@ 

Environment Specs

Observation Space

-

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f2289ca7dc0>, None))

+

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7fcf66147dc0>, None))

Action Space

Discrete(7)

@@ -915,7 +915,7 @@

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('minigrid/BabyAI-UnlockPickupDist/optimal-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/minigrid/index.html b/main/datasets/minigrid/index.html
index fa943c55..e5cb831d 100644
--- a/main/datasets/minigrid/index.html
+++ b/main/datasets/minigrid/index.html
@@ -13,7 +13,7 @@
 
     
         Minigrid - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/mujoco/ant/expert-v0/index.html b/main/datasets/mujoco/ant/expert-v0/index.html
index 3ee9c1d1..65a9f49c 100644
--- a/main/datasets/mujoco/ant/expert-v0/index.html
+++ b/main/datasets/mujoco/ant/expert-v0/index.html
@@ -13,7 +13,7 @@
 
     
         Expert - Minari Documentation
-      
+      
     
     
     
@@ -858,7 +858,7 @@ 

Environment Specshttps://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('mujoco/ant/expert-v0')
 env  = dataset.recover_environment()
@@ -915,7 +915,7 @@ 

Environment Specs

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

-
import minari
+
import minari
 
 dataset = minari.load_dataset('mujoco/ant/expert-v0')
 env  = dataset.recover_environment()
diff --git a/main/datasets/mujoco/ant/index.html b/main/datasets/mujoco/ant/index.html
index 861f8f19..3361c70a 100644
--- a/main/datasets/mujoco/ant/index.html
+++ b/main/datasets/mujoco/ant/index.html
@@ -13,7 +13,7 @@
 
     
         Ant - Minari Documentation
-      
+      
     
     
     
diff --git a/main/datasets/mujoco/index.html b/main/datasets/mujoco/index.html
index 96cc17b4..14b890bd 100644
--- a/main/datasets/mujoco/index.html
+++ b/main/datasets/mujoco/index.html
@@ -13,7 +13,7 @@
 
     
         MuJoCo - Minari Documentation
-      
+      
     
     
     
diff --git a/main/genindex/index.html b/main/genindex/index.html
index 1e05747d..106fde63 100644
--- a/main/genindex/index.html
+++ b/main/genindex/index.html
@@ -11,7 +11,7 @@
         
 
     Index - Minari Documentation
-
+
     
     
     
diff --git a/main/index.html b/main/index.html
index 9fd0070e..e48f98e4 100644
--- a/main/index.html
+++ b/main/index.html
@@ -13,7 +13,7 @@
 
     
         Minari Documentation
-      
+      
     
     
     
diff --git a/main/release_notes/index.html b/main/release_notes/index.html
index 93dcc04c..67082a78 100644
--- a/main/release_notes/index.html
+++ b/main/release_notes/index.html
@@ -13,7 +13,7 @@
 
     
         Release Notes - Minari Documentation
-      
+      
     
     
     
diff --git a/main/search/index.html b/main/search/index.html
index 235829c6..aa684cf5 100644
--- a/main/search/index.html
+++ b/main/search/index.html
@@ -10,7 +10,7 @@
     
         
 
-    Search - Minari Documentation
+    Search - Minari Documentation
     
     
     
diff --git a/main/searchindex.js b/main/searchindex.js
index 3c4e8187..79b5815c 100644
--- a/main/searchindex.js
+++ b/main/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"0.1.0": [[315, "release-0-1-0"]], "0.2.2": [[315, "release-0-2-2"]], "1. Proportional Term (P)": [[320, "proportional-term-p"]], "2. Derivative Term (D)": [[320, "derivative-term-d"]], "3. Integral Term (I)": [[320, "integral-term-i"]], "404 - Page Not Found": [[0, null]], "Ant": [[312, null]], "Ant Maze": [[15, null]], "Attributes": [[3, "attributes"], [6, "attributes"], [7, "attributes"], [8, "attributes"], [9, "attributes"]], "BabyAI ActionObjDoor": [[55, null]], "BabyAI BlockedUnlockPickup": [[58, null]], "BabyAI BossLevel": [[61, null]], "BabyAI BossLevelNoUnlock": [[64, null]], "BabyAI FindObjS5": [[67, null]], "BabyAI FindObjS6": [[70, null]], "BabyAI FindObjS7": [[73, null]], "BabyAI GoTo": [[76, null]], "BabyAI GoToDoor": [[79, null]], "BabyAI GoToLocal": [[82, null]], "BabyAI GoToLocalS5N2": [[85, null]], "BabyAI GoToLocalS6N2": [[88, null]], "BabyAI GoToLocalS6N3": [[91, null]], "BabyAI GoToLocalS6N4": [[94, null]], "BabyAI GoToLocalS7N4": [[97, null]], "BabyAI GoToLocalS7N5": [[100, null]], "BabyAI GoToLocalS8N2": [[103, null]], "BabyAI GoToLocalS8N3": [[106, null]], "BabyAI GoToLocalS8N4": [[109, null]], "BabyAI GoToLocalS8N5": [[112, null]], "BabyAI GoToLocalS8N6": [[115, null]], "BabyAI GoToLocalS8N7": [[118, null]], "BabyAI GoToObj": [[121, null]], "BabyAI GoToObjDoor": [[124, null]], "BabyAI GoToObjMaze": [[127, null]], "BabyAI GoToObjMazeOpen": [[130, null]], "BabyAI GoToObjMazeS4": [[133, null]], "BabyAI GoToObjMazeS4R2": [[136, null]], "BabyAI GoToObjMazeS5": [[139, null]], "BabyAI GoToObjMazeS6": [[142, null]], "BabyAI GoToObjMazeS7": [[145, null]], "BabyAI GoToObjS4": [[148, null]], "BabyAI GoToObjS6": [[151, null]], "BabyAI GoToOpen": [[154, null]], "BabyAI GoToRedBall": [[157, null]], "BabyAI GoToRedBallGrey": [[160, null]], "BabyAI GoToRedBallNoDists": [[163, null]], "BabyAI GoToRedBlueBall": [[166, null]], "BabyAI GoToSeq": [[169, null]], "BabyAI GoToSeqS5R2": [[172, null]], "BabyAI KeyCorridor": [[175, null]], "BabyAI KeyCorridorS3R1": [[178, null]], "BabyAI KeyCorridorS3R2": [[181, null]], "BabyAI KeyCorridorS3R3": [[184, null]], "BabyAI KeyCorridorS4R3": [[187, null]], "BabyAI KeyCorridorS5R3": [[190, null]], "BabyAI KeyCorridorS6R3": [[193, null]], "BabyAI MoveTwoAcrossS5N2": [[196, null]], "BabyAI MoveTwoAcrossS8N9": [[199, null]], "BabyAI OneRoomS12": [[202, null]], "BabyAI OneRoomS16": [[205, null]], "BabyAI OneRoomS20": [[208, null]], "BabyAI OneRoomS8": [[211, null]], "BabyAI Open": [[214, null]], "BabyAI OpenDoor": [[217, null]], "BabyAI OpenDoorColor": [[220, null]], "BabyAI OpenDoorDebug": [[223, null]], "BabyAI OpenDoorLoc": [[226, null]], "BabyAI OpenDoorsOrderN2": [[229, null]], "BabyAI OpenDoorsOrderN2Debug": [[232, null]], "BabyAI OpenDoorsOrderN4": [[235, null]], "BabyAI OpenDoorsOrderN4Debug": [[238, null]], "BabyAI OpenRedBlueDoors": [[241, null]], "BabyAI OpenRedBlueDoorsDebug": [[244, null]], "BabyAI OpenRedDoor": [[247, null]], "BabyAI OpenTwoDoors": [[250, null]], "BabyAI Pickup": [[253, null]], "BabyAI PickupAbove": [[256, null]], "BabyAI PickupLoc": [[259, null]], "BabyAI PutNextLocal": [[262, null]], "BabyAI PutNextLocalS5N3": [[265, null]], "BabyAI PutNextLocalS6N4": [[268, null]], "BabyAI PutNextS4N1": [[271, null]], "BabyAI PutNextS5N1": [[274, null]], "BabyAI PutNextS5N2": [[277, null]], "BabyAI PutNextS6N3": [[280, null]], "BabyAI PutNextS7N4": [[283, null]], "BabyAI Synth": [[286, null]], "BabyAI SynthLoc": [[289, null]], "BabyAI SynthSeq": [[292, null]], "BabyAI UnblockPickup": [[295, null]], "BabyAI UnlockLocal": [[298, null]], "BabyAI UnlockLocalDist": [[301, null]], "BabyAI UnlockPickup": [[304, null]], "BabyAI UnlockPickupDist": [[307, null]], "Basic Usage": [[12, null]], "Behavioral cloning with PyTorch": [[324, null], [324, "id1"]], "Build the Documentation": [[1, "build-the-documentation"]], "Building a replay buffer": [[322, "building-a-replay-buffer"]], "Checkpoint Minari Dataset": [[12, "checkpoint-minari-dataset"]], "Cloned": [[22, null], [26, null], [38, null], [51, null]], "Collect Data and Create Minari Dataset": [[320, "collect-data-and-create-minari-dataset"]], "Collecting Data": [[12, "collecting-data"]], "Collecting a subset of a dictionary space with StepDataCallback": [[319, null]], "Combine Minari Datasets": [[10, "combine-minari-datasets"], [12, "combine-minari-datasets"]], "Combine datasets": [[14, "combine-datasets"]], "Complete": [[31, null]], "Content": [[15, "content"], [25, "content"], [29, "content"], [30, "content"], [32, "content"], [37, "content"], [41, "content"], [42, "content"], [54, "content"], [55, "content"], [58, "content"], [61, "content"], [64, "content"], [67, "content"], [70, "content"], [73, "content"], [76, "content"], [79, "content"], [82, "content"], [85, "content"], [88, "content"], [91, "content"], [94, "content"], [97, "content"], [100, "content"], [103, "content"], [106, "content"], [109, "content"], [112, "content"], [115, "content"], [118, "content"], [121, "content"], [124, "content"], [127, "content"], [130, "content"], [133, "content"], [136, "content"], [139, "content"], [142, "content"], [145, "content"], [148, "content"], [151, "content"], [154, "content"], [157, "content"], [160, "content"], [163, "content"], [166, "content"], [169, "content"], [172, "content"], [175, "content"], [178, "content"], [181, "content"], [184, "content"], [187, "content"], [190, "content"], [193, "content"], [196, "content"], [199, "content"], [202, "content"], [205, "content"], [208, "content"], [211, "content"], [214, "content"], [217, "content"], [220, "content"], [223, "content"], [226, "content"], [229, "content"], [232, "content"], [235, "content"], [238, "content"], [241, "content"], [244, "content"], [247, "content"], [250, "content"], [253, "content"], [256, "content"], [259, "content"], [262, "content"], [265, "content"], [268, "content"], [271, "content"], [274, "content"], [277, "content"], [280, "content"], [283, "content"], [286, "content"], [289, "content"], [292, "content"], [295, "content"], [298, "content"], [301, "content"], [304, "content"], [307, "content"], [310, "content"], [312, "content"], [313, "content"]], "Create Minari Dataset": [[10, "create-minari-dataset"], [12, "create-minari-dataset"]], "Create Namespace": [[11, "create-namespace"]], "D4RL": [[30, null]], "DataCollector": [[2, null]], "Dataset Creation": [[316, null], [318, null], [321, "dataset-creation"]], "Dataset Metadata": [[13, "dataset-metadata"]], "Dataset Specs": [[16, "dataset-specs"], [17, "dataset-specs"], [18, "dataset-specs"], [19, "dataset-specs"], [20, "dataset-specs"], [21, "dataset-specs"], [22, "dataset-specs"], [23, "dataset-specs"], [24, "dataset-specs"], [26, "dataset-specs"], [27, "dataset-specs"], [28, "dataset-specs"], [31, "dataset-specs"], [33, "dataset-specs"], [34, "dataset-specs"], [35, "dataset-specs"], [36, "dataset-specs"], [38, "dataset-specs"], [39, "dataset-specs"], [40, "dataset-specs"], [43, "dataset-specs"], [44, "dataset-specs"], [45, "dataset-specs"], [46, "dataset-specs"], [47, "dataset-specs"], [48, "dataset-specs"], [49, "dataset-specs"], [50, "dataset-specs"], [51, "dataset-specs"], [52, "dataset-specs"], [53, "dataset-specs"], [56, "dataset-specs"], [57, "dataset-specs"], [59, "dataset-specs"], [60, "dataset-specs"], [62, "dataset-specs"], [63, "dataset-specs"], [65, "dataset-specs"], [66, "dataset-specs"], [68, "dataset-specs"], [69, "dataset-specs"], [71, "dataset-specs"], [72, "dataset-specs"], [74, "dataset-specs"], [75, "dataset-specs"], [77, "dataset-specs"], [78, "dataset-specs"], [80, "dataset-specs"], [81, "dataset-specs"], [83, "dataset-specs"], [84, "dataset-specs"], [86, "dataset-specs"], [87, "dataset-specs"], [89, "dataset-specs"], [90, "dataset-specs"], [92, "dataset-specs"], [93, "dataset-specs"], [95, "dataset-specs"], [96, "dataset-specs"], [98, "dataset-specs"], [99, "dataset-specs"], [101, "dataset-specs"], [102, "dataset-specs"], [104, "dataset-specs"], [105, "dataset-specs"], [107, "dataset-specs"], [108, "dataset-specs"], [110, "dataset-specs"], [111, "dataset-specs"], [113, "dataset-specs"], [114, "dataset-specs"], [116, "dataset-specs"], [117, "dataset-specs"], [119, "dataset-specs"], [120, "dataset-specs"], [122, "dataset-specs"], [123, "dataset-specs"], [125, "dataset-specs"], [126, "dataset-specs"], [128, "dataset-specs"], [129, "dataset-specs"], [131, "dataset-specs"], [132, "dataset-specs"], [134, "dataset-specs"], [135, "dataset-specs"], [137, "dataset-specs"], [138, "dataset-specs"], [140, "dataset-specs"], [141, "dataset-specs"], [143, "dataset-specs"], [144, "dataset-specs"], [146, "dataset-specs"], [147, "dataset-specs"], [149, "dataset-specs"], [150, "dataset-specs"], [152, "dataset-specs"], [153, "dataset-specs"], [155, "dataset-specs"], [156, "dataset-specs"], [158, "dataset-specs"], [159, "dataset-specs"], [161, "dataset-specs"], [162, "dataset-specs"], [164, "dataset-specs"], [165, "dataset-specs"], [167, "dataset-specs"], [168, "dataset-specs"], [170, "dataset-specs"], [171, "dataset-specs"], [173, "dataset-specs"], [174, "dataset-specs"], [176, "dataset-specs"], [177, "dataset-specs"], [179, "dataset-specs"], [180, "dataset-specs"], [182, "dataset-specs"], [183, "dataset-specs"], [185, "dataset-specs"], [186, "dataset-specs"], [188, "dataset-specs"], [189, "dataset-specs"], [191, "dataset-specs"], [192, "dataset-specs"], [194, "dataset-specs"], [195, "dataset-specs"], [197, "dataset-specs"], [198, "dataset-specs"], [200, "dataset-specs"], [201, "dataset-specs"], [203, "dataset-specs"], [204, "dataset-specs"], [206, "dataset-specs"], [207, "dataset-specs"], [209, "dataset-specs"], [210, "dataset-specs"], [212, "dataset-specs"], [213, "dataset-specs"], [215, "dataset-specs"], [216, "dataset-specs"], [218, "dataset-specs"], [219, "dataset-specs"], [221, "dataset-specs"], [222, "dataset-specs"], [224, "dataset-specs"], [225, "dataset-specs"], [227, "dataset-specs"], [228, "dataset-specs"], [230, "dataset-specs"], [231, "dataset-specs"], [233, "dataset-specs"], [234, "dataset-specs"], [236, "dataset-specs"], [237, "dataset-specs"], [239, "dataset-specs"], [240, "dataset-specs"], [242, "dataset-specs"], [243, "dataset-specs"], [245, "dataset-specs"], [246, "dataset-specs"], [248, "dataset-specs"], [249, "dataset-specs"], [251, "dataset-specs"], [252, "dataset-specs"], [254, "dataset-specs"], [255, "dataset-specs"], [257, "dataset-specs"], [258, "dataset-specs"], [260, "dataset-specs"], [261, "dataset-specs"], [263, "dataset-specs"], [264, "dataset-specs"], [266, "dataset-specs"], [267, "dataset-specs"], [269, "dataset-specs"], [270, "dataset-specs"], [272, "dataset-specs"], [273, "dataset-specs"], [275, "dataset-specs"], [276, "dataset-specs"], [278, "dataset-specs"], [279, "dataset-specs"], [281, "dataset-specs"], [282, "dataset-specs"], [284, "dataset-specs"], [285, "dataset-specs"], [287, "dataset-specs"], [288, "dataset-specs"], [290, "dataset-specs"], [291, "dataset-specs"], [293, "dataset-specs"], [294, "dataset-specs"], [296, "dataset-specs"], [297, "dataset-specs"], [299, "dataset-specs"], [300, "dataset-specs"], [302, "dataset-specs"], [303, "dataset-specs"], [305, "dataset-specs"], [306, "dataset-specs"], [308, "dataset-specs"], [309, "dataset-specs"], [311, "dataset-specs"]], "Dataset Standards": [[13, null]], "Dataset generation": [[324, "dataset-generation"]], "Defining the model": [[322, "defining-the-model"]], "Delete Minari Datasets": [[10, "delete-minari-datasets"]], "Delete Namespace": [[11, "delete-namespace"]], "Delete local datasets": [[14, "delete-local-datasets"]], "Description": [[16, "description"], [17, "description"], [18, "description"], [19, "description"], [20, "description"], [21, "description"], [22, "description"], [23, "description"], [24, "description"], [26, "description"], [27, "description"], [28, "description"], [31, "description"], [33, "description"], [34, "description"], [35, "description"], [36, "description"], [38, "description"], [39, "description"], [40, "description"], [43, "description"], [44, "description"], [45, "description"], [46, "description"], [47, "description"], [48, "description"], [49, "description"], [50, "description"], [51, "description"], [52, "description"], [53, "description"], [56, "description"], [57, "description"], [59, "description"], [60, "description"], [62, "description"], [63, "description"], [65, "description"], [66, "description"], [68, "description"], [69, "description"], [71, "description"], [72, "description"], [74, "description"], [75, "description"], [77, "description"], [78, "description"], [80, "description"], [81, "description"], [83, "description"], [84, "description"], [86, "description"], [87, "description"], [89, "description"], [90, "description"], [92, "description"], [93, "description"], [95, "description"], [96, "description"], [98, "description"], [99, "description"], [101, "description"], [102, "description"], [104, "description"], [105, "description"], [107, "description"], [108, "description"], [110, "description"], [111, "description"], [113, "description"], [114, "description"], [116, "description"], [117, "description"], [119, "description"], [120, "description"], [122, "description"], [123, "description"], [125, "description"], [126, "description"], [128, "description"], [129, "description"], [131, "description"], [132, "description"], [134, "description"], [135, "description"], [137, "description"], [138, "description"], [140, "description"], [141, "description"], [143, "description"], [144, "description"], [146, "description"], [147, "description"], [149, "description"], [150, "description"], [152, "description"], [153, "description"], [155, "description"], [156, "description"], [158, "description"], [159, "description"], [161, "description"], [162, "description"], [164, "description"], [165, "description"], [167, "description"], [168, "description"], [170, "description"], [171, "description"], [173, "description"], [174, "description"], [176, "description"], [177, "description"], [179, "description"], [180, "description"], [182, "description"], [183, "description"], [185, "description"], [186, "description"], [188, "description"], [189, "description"], [191, "description"], [192, "description"], [194, "description"], [195, "description"], [197, "description"], [198, "description"], [200, "description"], [201, "description"], [203, "description"], [204, "description"], [206, "description"], [207, "description"], [209, "description"], [210, "description"], [212, "description"], [213, "description"], [215, "description"], [216, "description"], [218, "description"], [219, "description"], [221, "description"], [222, "description"], [224, "description"], [225, "description"], [227, "description"], [228, "description"], [230, "description"], [231, "description"], [233, "description"], [234, "description"], [236, "description"], [237, "description"], [239, "description"], [240, "description"], [242, "description"], [243, "description"], [245, "description"], [246, "description"], [248, "description"], [249, "description"], [251, "description"], [252, "description"], [254, "description"], [255, "description"], [257, "description"], [258, "description"], [260, "description"], [261, "description"], [263, "description"], [264, "description"], [266, "description"], [267, "description"], [269, "description"], [270, "description"], [272, "description"], [273, "description"], [275, "description"], [276, "description"], [278, "description"], [279, "description"], [281, "description"], [282, "description"], [284, "description"], [285, "description"], [287, "description"], [288, "description"], [290, "description"], [291, "description"], [293, "description"], [294, "description"], [296, "description"], [297, "description"], [299, "description"], [300, "description"], [302, "description"], [303, "description"], [305, "description"], [306, "description"], [308, "description"], [309, "description"], [311, "description"]], "Door": [[25, null]], "Download Datasets": [[12, "download-datasets"]], "Download Minari Dataset": [[10, "download-minari-dataset"]], "Download Namespace Metadata": [[11, "download-namespace-metadata"]], "Download datasets": [[14, "download-datasets"]], "Environment Specs": [[16, "environment-specs"], [17, "environment-specs"], [18, "environment-specs"], [19, "environment-specs"], [20, "environment-specs"], [21, "environment-specs"], [22, "environment-specs"], [23, "environment-specs"], [24, "environment-specs"], [26, "environment-specs"], [27, "environment-specs"], [28, "environment-specs"], [31, "environment-specs"], [33, "environment-specs"], [34, "environment-specs"], [35, "environment-specs"], [36, "environment-specs"], [38, "environment-specs"], [39, "environment-specs"], [40, "environment-specs"], [43, "environment-specs"], [44, "environment-specs"], [45, "environment-specs"], [46, "environment-specs"], [47, "environment-specs"], [48, "environment-specs"], [49, "environment-specs"], [50, "environment-specs"], [51, "environment-specs"], [52, "environment-specs"], [53, "environment-specs"], [56, "environment-specs"], [57, "environment-specs"], [59, "environment-specs"], [60, "environment-specs"], [62, "environment-specs"], [63, "environment-specs"], [65, "environment-specs"], [66, "environment-specs"], [68, "environment-specs"], [69, "environment-specs"], [71, "environment-specs"], [72, "environment-specs"], [74, "environment-specs"], [75, "environment-specs"], [77, "environment-specs"], [78, "environment-specs"], [80, "environment-specs"], [81, "environment-specs"], [83, "environment-specs"], [84, "environment-specs"], [86, "environment-specs"], [87, "environment-specs"], [89, "environment-specs"], [90, "environment-specs"], [92, "environment-specs"], [93, "environment-specs"], [95, "environment-specs"], [96, "environment-specs"], [98, "environment-specs"], [99, "environment-specs"], [101, "environment-specs"], [102, "environment-specs"], [104, "environment-specs"], [105, "environment-specs"], [107, "environment-specs"], [108, "environment-specs"], [110, "environment-specs"], [111, "environment-specs"], [113, "environment-specs"], [114, "environment-specs"], [116, "environment-specs"], [117, "environment-specs"], [119, "environment-specs"], [120, "environment-specs"], [122, "environment-specs"], [123, "environment-specs"], [125, "environment-specs"], [126, "environment-specs"], [128, "environment-specs"], [129, "environment-specs"], [131, "environment-specs"], [132, "environment-specs"], [134, "environment-specs"], [135, "environment-specs"], [137, "environment-specs"], [138, "environment-specs"], [140, "environment-specs"], [141, "environment-specs"], [143, "environment-specs"], [144, "environment-specs"], [146, "environment-specs"], [147, "environment-specs"], [149, "environment-specs"], [150, "environment-specs"], [152, "environment-specs"], [153, "environment-specs"], [155, "environment-specs"], [156, "environment-specs"], [158, "environment-specs"], [159, "environment-specs"], [161, "environment-specs"], [162, "environment-specs"], [164, "environment-specs"], [165, "environment-specs"], [167, "environment-specs"], [168, "environment-specs"], [170, "environment-specs"], [171, "environment-specs"], [173, "environment-specs"], [174, "environment-specs"], [176, "environment-specs"], [177, "environment-specs"], [179, "environment-specs"], [180, "environment-specs"], [182, "environment-specs"], [183, "environment-specs"], [185, "environment-specs"], [186, "environment-specs"], [188, "environment-specs"], [189, "environment-specs"], [191, "environment-specs"], [192, "environment-specs"], [194, "environment-specs"], [195, "environment-specs"], [197, "environment-specs"], [198, "environment-specs"], [200, "environment-specs"], [201, "environment-specs"], [203, "environment-specs"], [204, "environment-specs"], [206, "environment-specs"], [207, "environment-specs"], [209, "environment-specs"], [210, "environment-specs"], [212, "environment-specs"], [213, "environment-specs"], [215, "environment-specs"], [216, "environment-specs"], [218, "environment-specs"], [219, "environment-specs"], [221, "environment-specs"], [222, "environment-specs"], [224, "environment-specs"], [225, "environment-specs"], [227, "environment-specs"], [228, "environment-specs"], [230, "environment-specs"], [231, "environment-specs"], [233, "environment-specs"], [234, "environment-specs"], [236, "environment-specs"], [237, "environment-specs"], [239, "environment-specs"], [240, "environment-specs"], [242, "environment-specs"], [243, "environment-specs"], [245, "environment-specs"], [246, "environment-specs"], [248, "environment-specs"], [249, "environment-specs"], [251, "environment-specs"], [252, "environment-specs"], [254, "environment-specs"], [255, "environment-specs"], [257, "environment-specs"], [258, "environment-specs"], [260, "environment-specs"], [261, "environment-specs"], [263, "environment-specs"], [264, "environment-specs"], [266, "environment-specs"], [267, "environment-specs"], [269, "environment-specs"], [270, "environment-specs"], [272, "environment-specs"], [273, "environment-specs"], [275, "environment-specs"], [276, "environment-specs"], [278, "environment-specs"], [279, "environment-specs"], [281, "environment-specs"], [282, "environment-specs"], [284, "environment-specs"], [285, "environment-specs"], [287, "environment-specs"], [288, "environment-specs"], [290, "environment-specs"], [291, "environment-specs"], [293, "environment-specs"], [294, "environment-specs"], [296, "environment-specs"], [297, "environment-specs"], [299, "environment-specs"], [300, "environment-specs"], [302, "environment-specs"], [303, "environment-specs"], [305, "environment-specs"], [306, "environment-specs"], [308, "environment-specs"], [309, "environment-specs"], [311, "environment-specs"]], "EpisodeBuffer": [[3, null]], "EpisodeData": [[6, null]], "EpisodeData Structure": [[13, "episodedata-structure"]], "EpisodeMetadataCallback": [[4, null]], "Evaluation Environment Specs": [[16, "evaluation-environment-specs"], [17, "evaluation-environment-specs"], [18, "evaluation-environment-specs"], [19, "evaluation-environment-specs"], [20, "evaluation-environment-specs"], [21, "evaluation-environment-specs"], [22, "evaluation-environment-specs"], [23, "evaluation-environment-specs"], [24, "evaluation-environment-specs"], [26, "evaluation-environment-specs"], [27, "evaluation-environment-specs"], [28, "evaluation-environment-specs"], [31, "evaluation-environment-specs"], [33, "evaluation-environment-specs"], [34, "evaluation-environment-specs"], [35, "evaluation-environment-specs"], [36, "evaluation-environment-specs"], [38, "evaluation-environment-specs"], [39, "evaluation-environment-specs"], [40, "evaluation-environment-specs"], [43, "evaluation-environment-specs"], [44, "evaluation-environment-specs"], [45, "evaluation-environment-specs"], [46, "evaluation-environment-specs"], [47, "evaluation-environment-specs"], [48, "evaluation-environment-specs"], [49, "evaluation-environment-specs"], [50, "evaluation-environment-specs"], [51, "evaluation-environment-specs"], [52, "evaluation-environment-specs"], [53, "evaluation-environment-specs"], [56, "evaluation-environment-specs"], [57, "evaluation-environment-specs"], [59, "evaluation-environment-specs"], [60, "evaluation-environment-specs"], [62, "evaluation-environment-specs"], [63, "evaluation-environment-specs"], [65, "evaluation-environment-specs"], [66, "evaluation-environment-specs"], [68, "evaluation-environment-specs"], [69, "evaluation-environment-specs"], [71, "evaluation-environment-specs"], [72, "evaluation-environment-specs"], [74, "evaluation-environment-specs"], [75, "evaluation-environment-specs"], [77, "evaluation-environment-specs"], [78, "evaluation-environment-specs"], [80, "evaluation-environment-specs"], [81, "evaluation-environment-specs"], [83, "evaluation-environment-specs"], [84, "evaluation-environment-specs"], [86, "evaluation-environment-specs"], [87, "evaluation-environment-specs"], [89, "evaluation-environment-specs"], [90, "evaluation-environment-specs"], [92, "evaluation-environment-specs"], [93, "evaluation-environment-specs"], [95, "evaluation-environment-specs"], [96, "evaluation-environment-specs"], [98, "evaluation-environment-specs"], [99, "evaluation-environment-specs"], [101, "evaluation-environment-specs"], [102, "evaluation-environment-specs"], [104, "evaluation-environment-specs"], [105, "evaluation-environment-specs"], [107, "evaluation-environment-specs"], [108, "evaluation-environment-specs"], [110, "evaluation-environment-specs"], [111, "evaluation-environment-specs"], [113, "evaluation-environment-specs"], [114, "evaluation-environment-specs"], [116, "evaluation-environment-specs"], [117, "evaluation-environment-specs"], [119, "evaluation-environment-specs"], [120, "evaluation-environment-specs"], [122, "evaluation-environment-specs"], [123, "evaluation-environment-specs"], [125, "evaluation-environment-specs"], [126, "evaluation-environment-specs"], [128, "evaluation-environment-specs"], [129, "evaluation-environment-specs"], [131, "evaluation-environment-specs"], [132, "evaluation-environment-specs"], [134, "evaluation-environment-specs"], [135, "evaluation-environment-specs"], [137, "evaluation-environment-specs"], [138, "evaluation-environment-specs"], [140, "evaluation-environment-specs"], [141, "evaluation-environment-specs"], [143, "evaluation-environment-specs"], [144, "evaluation-environment-specs"], [146, "evaluation-environment-specs"], [147, "evaluation-environment-specs"], [149, "evaluation-environment-specs"], [150, "evaluation-environment-specs"], [152, "evaluation-environment-specs"], [153, "evaluation-environment-specs"], [155, "evaluation-environment-specs"], [156, "evaluation-environment-specs"], [158, "evaluation-environment-specs"], [159, "evaluation-environment-specs"], [161, "evaluation-environment-specs"], [162, "evaluation-environment-specs"], [164, "evaluation-environment-specs"], [165, "evaluation-environment-specs"], [167, "evaluation-environment-specs"], [168, "evaluation-environment-specs"], [170, "evaluation-environment-specs"], [171, "evaluation-environment-specs"], [173, "evaluation-environment-specs"], [174, "evaluation-environment-specs"], [176, "evaluation-environment-specs"], [177, "evaluation-environment-specs"], [179, "evaluation-environment-specs"], [180, "evaluation-environment-specs"], [182, "evaluation-environment-specs"], [183, "evaluation-environment-specs"], [185, "evaluation-environment-specs"], [186, "evaluation-environment-specs"], [188, "evaluation-environment-specs"], [189, "evaluation-environment-specs"], [191, "evaluation-environment-specs"], [192, "evaluation-environment-specs"], [194, "evaluation-environment-specs"], [195, "evaluation-environment-specs"], [197, "evaluation-environment-specs"], [198, "evaluation-environment-specs"], [200, "evaluation-environment-specs"], [201, "evaluation-environment-specs"], [203, "evaluation-environment-specs"], [204, "evaluation-environment-specs"], [206, "evaluation-environment-specs"], [207, "evaluation-environment-specs"], [209, "evaluation-environment-specs"], [210, "evaluation-environment-specs"], [212, "evaluation-environment-specs"], [213, "evaluation-environment-specs"], [215, "evaluation-environment-specs"], [216, "evaluation-environment-specs"], [218, "evaluation-environment-specs"], [219, "evaluation-environment-specs"], [221, "evaluation-environment-specs"], [222, "evaluation-environment-specs"], [224, "evaluation-environment-specs"], [225, "evaluation-environment-specs"], [227, "evaluation-environment-specs"], [228, "evaluation-environment-specs"], [230, "evaluation-environment-specs"], [231, "evaluation-environment-specs"], [233, "evaluation-environment-specs"], [234, "evaluation-environment-specs"], [236, "evaluation-environment-specs"], [237, "evaluation-environment-specs"], [239, "evaluation-environment-specs"], [240, "evaluation-environment-specs"], [242, "evaluation-environment-specs"], [243, "evaluation-environment-specs"], [245, "evaluation-environment-specs"], [246, "evaluation-environment-specs"], [248, "evaluation-environment-specs"], [249, "evaluation-environment-specs"], [251, "evaluation-environment-specs"], [252, "evaluation-environment-specs"], [254, "evaluation-environment-specs"], [255, "evaluation-environment-specs"], [257, "evaluation-environment-specs"], [258, "evaluation-environment-specs"], [260, "evaluation-environment-specs"], [261, "evaluation-environment-specs"], [263, "evaluation-environment-specs"], [264, "evaluation-environment-specs"], [266, "evaluation-environment-specs"], [267, "evaluation-environment-specs"], [269, "evaluation-environment-specs"], [270, "evaluation-environment-specs"], [272, "evaluation-environment-specs"], [273, "evaluation-environment-specs"], [275, "evaluation-environment-specs"], [276, "evaluation-environment-specs"], [278, "evaluation-environment-specs"], [279, "evaluation-environment-specs"], [281, "evaluation-environment-specs"], [282, "evaluation-environment-specs"], [284, "evaluation-environment-specs"], [285, "evaluation-environment-specs"], [287, "evaluation-environment-specs"], [288, "evaluation-environment-specs"], [290, "evaluation-environment-specs"], [291, "evaluation-environment-specs"], [293, "evaluation-environment-specs"], [294, "evaluation-environment-specs"], [296, "evaluation-environment-specs"], [297, "evaluation-environment-specs"], [299, "evaluation-environment-specs"], [300, "evaluation-environment-specs"], [302, "evaluation-environment-specs"], [303, "evaluation-environment-specs"], [305, "evaluation-environment-specs"], [306, "evaluation-environment-specs"], [308, "evaluation-environment-specs"], [309, "evaluation-environment-specs"], [311, "evaluation-environment-specs"]], "Expert": [[23, null], [27, null], [39, null], [52, null], [311, null]], "Filter Episodes": [[12, "filter-episodes"]], "For headless environments": [[322, "for-headless-environments"]], "Fourrooms": [[36, null]], "Fourrooms-Random": [[35, null]], "Get Local Namespace Metadata": [[11, "get-local-namespace-metadata"]], "Hammer": [[29, null]], "Human": [[24, null], [28, null], [40, null], [53, null]], "Implicit Q-Learning": [[322, "implicit-q-learning"]], "Implicit Q-Learning with TorchRL": [[322, null]], "Imports": [[324, "imports"]], "Installation": [[12, "installation"]], "Kitchen": [[32, null]], "Large": [[44, null]], "Large-Dense": [[43, null]], "Large-Diverse": [[16, null]], "Large-Play": [[17, null]], "List Minari Datasets": [[10, "list-minari-datasets"]], "List Namespaces": [[11, "list-namespaces"]], "List datasets": [[14, "list-datasets"]], "Load Local Datasets": [[12, "load-local-datasets"]], "Load Minari Dataset": [[10, "load-minari-dataset"]], "Loss and optimizer": [[322, "loss-and-optimizer"]], "Medium": [[46, null]], "Medium-Dense": [[45, null]], "Medium-Diverse": [[18, null]], "Medium-Play": [[19, null]], "Methods": [[2, "methods"], [3, "methods"], [4, "methods"], [5, "methods"], [7, "methods"], [8, "methods"]], "Minari": [[10, null]], "Minari CLI": [[14, null]], "Minari Dataset Directory": [[13, "minari-dataset-directory"]], "Minari documentation": [[1, null]], "MinariDataset": [[7, null]], "MinariStorage": [[8, null]], "MiniGrid": [[37, null]], "Minigrid": [[310, null]], "Mixed": [[33, null]], "Modified StepDataCallback": [[320, "modified-stepdatacallback"]], "MuJoCo": [[313, null]], "Namespace": [[11, null]], "Namespace metadata": [[13, "namespace-metadata"]], "Normalize Score": [[10, "normalize-score"]], "Observation and Action Spaces": [[13, "observation-and-action-spaces"]], "Open": [[48, null]], "Open-Dense": [[47, null]], "Optimal": [[57, null], [60, null], [63, null], [66, null], [69, null], [72, null], [75, null], [78, null], [81, null], [84, null], [87, null], [90, null], [93, null], [96, null], [99, null], [102, null], [105, null], [108, null], [111, null], [114, null], [117, null], [120, null], [123, null], [126, null], [129, null], [132, null], [135, null], [138, null], [141, null], [144, null], [147, null], [150, null], [153, null], [156, null], [159, null], [162, null], [165, null], [168, null], [171, null], [174, null], [177, null], [180, null], [183, null], [186, null], [189, null], [192, null], [195, null], [198, null], [201, null], [204, null], [207, null], [210, null], [213, null], [216, null], [219, null], [222, null], [225, null], [228, null], [231, null], [234, null], [237, null], [240, null], [243, null], [246, null], [249, null], [252, null], [255, null], [258, null], [261, null], [264, null], [267, null], [270, null], [273, null], [276, null], [279, null], [282, null], [285, null], [288, null], [291, null], [294, null], [297, null], [300, null], [303, null], [306, null], [309, null]], "Optimal-Fullobs": [[56, null], [59, null], [62, null], [65, null], [68, null], [71, null], [74, null], [77, null], [80, null], [83, null], [86, null], [89, null], [92, null], [95, null], [98, null], [101, null], [104, null], [107, null], [110, null], [113, null], [116, null], [119, null], [122, null], [125, null], [128, null], [131, null], [134, null], [137, null], [140, null], [143, null], [146, null], [149, null], [152, null], [155, null], [158, null], [161, null], [164, null], [167, null], [170, null], [173, null], [176, null], [179, null], [182, null], [185, null], [188, null], [191, null], [194, null], [197, null], [200, null], [203, null], [206, null], [209, null], [212, null], [215, null], [218, null], [221, null], [224, null], [227, null], [230, null], [233, null], [236, null], [239, null], [242, null], [245, null], [248, null], [251, null], [254, null], [257, null], [260, null], [263, null], [266, null], [269, null], [272, null], [275, null], [278, null], [281, null], [284, null], [287, null], [290, null], [293, null], [296, null], [299, null], [302, null], [305, null], [308, null]], "Partial": [[34, null]], "Pen": [[41, null]], "Point Maze": [[42, null]], "PointMaze D4RL dataset": [[320, null]], "Policy training": [[324, "policy-training"]], "Pre-requisites": [[322, "pre-requisites"]], "Recover Environment": [[12, "recover-environment"]], "References": [[15, "references"], [25, "references"], [29, "references"], [30, "references"], [32, "references"], [37, "references"], [41, "references"], [42, "references"], [54, "references"], [320, "references"]], "Release Notes": [[315, null]], "Relocate": [[54, null]], "Results": [[322, "results"]], "Sampling Episodes": [[12, "sampling-episodes"]], "Save Dataset": [[12, "save-dataset"]], "Serializing a custom space": [[317, null]], "Show datasets details": [[14, "show-datasets-details"]], "Split Dataset": [[12, "split-dataset"]], "Split Minari Dataset": [[10, "split-minari-dataset"]], "StepData": [[9, null]], "StepDataCallback": [[5, null]], "Supported Spaces": [[13, "supported-spaces"]], "The Adroit Pen environment": [[322, "the-adroit-pen-environment"]], "The requested page could not be found.": [[0, "the-requested-page-could-not-be-found"]], "Training": [[322, "training"]], "Tutorials": [[321, null]], "Umaze": [[21, null], [50, null]], "Umaze-Dense": [[49, null]], "Umaze-Diverse": [[20, null]], "Update Namespace": [[11, "update-namespace"]], "Upload Namespace": [[11, "upload-namespace"]], "Upload datasets": [[14, "upload-datasets"]], "Using Datasets": [[321, "using-datasets"], [323, null], [325, null]], "Using Minari Datasets": [[12, "using-minari-datasets"]], "Using Namespaces": [[12, "using-namespaces"]], "WayPoint Planner": [[320, "waypoint-planner"]], "Waypoint Controller": [[320, "waypoint-controller"]], "minari.DataCollector": [[2, "minari-datacollector"]], "minari.EpisodeData": [[6, "minari-episodedata"]], "minari.EpisodeMetadataCallback": [[4, "minari-episodemetadatacallback"]], "minari.MinariDataset": [[7, "minari-minaridataset"]], "minari.StepData": [[9, "minari-stepdata"]], "minari.StepDataCallback": [[5, "minari-stepdatacallback"]], "minari.data_collector.EpisodeBuffer": [[3, "minari-data-collector-episodebuffer"]], "minari.dataset.minari_storage.MinariStorage": [[8, "minari-dataset-minari-storage-minaristorage"]], "v0.3.0": [[315, "release-v0-3-0"]], "v0.3.1": [[315, "release-v0-3-1"]], "v0.4.0": [[315, "release-v0-4-0"]], "v0.4.1": [[315, "release-v0-4-1"]], "v0.4.2": [[315, "release-v0-4-2"]], "v0.4.3": [[315, "release-v0-4-3"]], "v0.5.0": [[315, "release-v0-5-0"]], "v0.5.1": [[315, "release-v0-5-1"]], "v0.5.2": [[315, "release-v0-5-2"]]}, "docnames": ["404", "README", "api/data_collector", "api/data_collector/episode_buffer", "api/data_collector/episode_metadata_callback", "api/data_collector/step_data_callback", "api/minari_dataset/episode_data", "api/minari_dataset/minari_dataset", "api/minari_dataset/minari_storage", "api/minari_dataset/step_data", "api/minari_functions", "api/namespace/namespace", "content/basic_usage", "content/dataset_standards", "content/minari_cli", "datasets/D4RL/antmaze/index", "datasets/D4RL/antmaze/large-diverse-v1", "datasets/D4RL/antmaze/large-play-v1", "datasets/D4RL/antmaze/medium-diverse-v1", "datasets/D4RL/antmaze/medium-play-v1", "datasets/D4RL/antmaze/umaze-diverse-v1", "datasets/D4RL/antmaze/umaze-v1", "datasets/D4RL/door/cloned-v2", "datasets/D4RL/door/expert-v2", "datasets/D4RL/door/human-v2", "datasets/D4RL/door/index", "datasets/D4RL/hammer/cloned-v2", "datasets/D4RL/hammer/expert-v2", "datasets/D4RL/hammer/human-v2", "datasets/D4RL/hammer/index", "datasets/D4RL/index", "datasets/D4RL/kitchen/complete-v2", "datasets/D4RL/kitchen/index", "datasets/D4RL/kitchen/mixed-v2", "datasets/D4RL/kitchen/partial-v2", "datasets/D4RL/minigrid/fourrooms-random-v0", "datasets/D4RL/minigrid/fourrooms-v0", "datasets/D4RL/minigrid/index", "datasets/D4RL/pen/cloned-v2", "datasets/D4RL/pen/expert-v2", "datasets/D4RL/pen/human-v2", "datasets/D4RL/pen/index", "datasets/D4RL/pointmaze/index", "datasets/D4RL/pointmaze/large-dense-v2", "datasets/D4RL/pointmaze/large-v2", "datasets/D4RL/pointmaze/medium-dense-v2", "datasets/D4RL/pointmaze/medium-v2", "datasets/D4RL/pointmaze/open-dense-v2", "datasets/D4RL/pointmaze/open-v2", "datasets/D4RL/pointmaze/umaze-dense-v2", "datasets/D4RL/pointmaze/umaze-v2", "datasets/D4RL/relocate/cloned-v2", "datasets/D4RL/relocate/expert-v2", "datasets/D4RL/relocate/human-v2", "datasets/D4RL/relocate/index", "datasets/minigrid/BabyAI-ActionObjDoor/index", "datasets/minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-ActionObjDoor/optimal-v0", "datasets/minigrid/BabyAI-BlockedUnlockPickup/index", "datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0", "datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-v0", "datasets/minigrid/BabyAI-BossLevel/index", "datasets/minigrid/BabyAI-BossLevel/optimal-fullobs-v0", "datasets/minigrid/BabyAI-BossLevel/optimal-v0", "datasets/minigrid/BabyAI-BossLevelNoUnlock/index", "datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0", "datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-v0", "datasets/minigrid/BabyAI-FindObjS5/index", "datasets/minigrid/BabyAI-FindObjS5/optimal-fullobs-v0", "datasets/minigrid/BabyAI-FindObjS5/optimal-v0", "datasets/minigrid/BabyAI-FindObjS6/index", "datasets/minigrid/BabyAI-FindObjS6/optimal-fullobs-v0", "datasets/minigrid/BabyAI-FindObjS6/optimal-v0", "datasets/minigrid/BabyAI-FindObjS7/index", "datasets/minigrid/BabyAI-FindObjS7/optimal-fullobs-v0", "datasets/minigrid/BabyAI-FindObjS7/optimal-v0", "datasets/minigrid/BabyAI-GoTo/index", "datasets/minigrid/BabyAI-GoTo/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoTo/optimal-v0", "datasets/minigrid/BabyAI-GoToDoor/index", "datasets/minigrid/BabyAI-GoToDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToDoor/optimal-v0", "datasets/minigrid/BabyAI-GoToLocal/index", "datasets/minigrid/BabyAI-GoToLocal/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocal/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS5N2/index", "datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS6N2/index", "datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS6N3/index", "datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS6N4/index", "datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS7N4/index", "datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS7N5/index", "datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N2/index", "datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N3/index", "datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N4/index", "datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N5/index", "datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N6/index", "datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N7/index", "datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-v0", "datasets/minigrid/BabyAI-GoToObj/index", "datasets/minigrid/BabyAI-GoToObj/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObj/optimal-v0", "datasets/minigrid/BabyAI-GoToObjDoor/index", "datasets/minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjDoor/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMaze/index", "datasets/minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMaze/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeOpen/index", "datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS4/index", "datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/index", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS5/index", "datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS6/index", "datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS7/index", "datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-v0", "datasets/minigrid/BabyAI-GoToObjS4/index", "datasets/minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjS4/optimal-v0", "datasets/minigrid/BabyAI-GoToObjS6/index", "datasets/minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjS6/optimal-v0", "datasets/minigrid/BabyAI-GoToOpen/index", "datasets/minigrid/BabyAI-GoToOpen/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToOpen/optimal-v0", "datasets/minigrid/BabyAI-GoToRedBall/index", "datasets/minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToRedBall/optimal-v0", "datasets/minigrid/BabyAI-GoToRedBallGrey/index", "datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-v0", "datasets/minigrid/BabyAI-GoToRedBallNoDists/index", "datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-v0", "datasets/minigrid/BabyAI-GoToRedBlueBall/index", "datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-v0", "datasets/minigrid/BabyAI-GoToSeq/index", "datasets/minigrid/BabyAI-GoToSeq/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToSeq/optimal-v0", "datasets/minigrid/BabyAI-GoToSeqS5R2/index", "datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridor/index", "datasets/minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridor/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R1/index", "datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R2/index", "datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R3/index", "datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS4R3/index", "datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS5R3/index", "datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS6R3/index", "datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-v0", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/index", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/index", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0", "datasets/minigrid/BabyAI-OneRoomS12/index", "datasets/minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OneRoomS12/optimal-v0", "datasets/minigrid/BabyAI-OneRoomS16/index", "datasets/minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OneRoomS16/optimal-v0", "datasets/minigrid/BabyAI-OneRoomS20/index", "datasets/minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OneRoomS20/optimal-v0", "datasets/minigrid/BabyAI-OneRoomS8/index", "datasets/minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OneRoomS8/optimal-v0", "datasets/minigrid/BabyAI-Open/index", "datasets/minigrid/BabyAI-Open/optimal-fullobs-v0", "datasets/minigrid/BabyAI-Open/optimal-v0", "datasets/minigrid/BabyAI-OpenDoor/index", "datasets/minigrid/BabyAI-OpenDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoor/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorColor/index", "datasets/minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorColor/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorDebug/index", "datasets/minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorDebug/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorLoc/index", "datasets/minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorLoc/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/index", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/index", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/index", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/index", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0", "datasets/minigrid/BabyAI-OpenRedBlueDoors/index", "datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-v0", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/index", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0", "datasets/minigrid/BabyAI-OpenRedDoor/index", "datasets/minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenRedDoor/optimal-v0", "datasets/minigrid/BabyAI-OpenTwoDoors/index", "datasets/minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenTwoDoors/optimal-v0", "datasets/minigrid/BabyAI-Pickup/index", "datasets/minigrid/BabyAI-Pickup/optimal-fullobs-v0", "datasets/minigrid/BabyAI-Pickup/optimal-v0", "datasets/minigrid/BabyAI-PickupAbove/index", "datasets/minigrid/BabyAI-PickupAbove/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PickupAbove/optimal-v0", "datasets/minigrid/BabyAI-PickupLoc/index", "datasets/minigrid/BabyAI-PickupLoc/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PickupLoc/optimal-v0", "datasets/minigrid/BabyAI-PutNextLocal/index", "datasets/minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextLocal/optimal-v0", "datasets/minigrid/BabyAI-PutNextLocalS5N3/index", "datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-v0", "datasets/minigrid/BabyAI-PutNextLocalS6N4/index", "datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-v0", "datasets/minigrid/BabyAI-PutNextS4N1/index", "datasets/minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS4N1/optimal-v0", "datasets/minigrid/BabyAI-PutNextS5N1/index", "datasets/minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS5N1/optimal-v0", "datasets/minigrid/BabyAI-PutNextS5N2/index", "datasets/minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS5N2/optimal-v0", "datasets/minigrid/BabyAI-PutNextS6N3/index", "datasets/minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS6N3/optimal-v0", "datasets/minigrid/BabyAI-PutNextS7N4/index", "datasets/minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS7N4/optimal-v0", "datasets/minigrid/BabyAI-Synth/index", "datasets/minigrid/BabyAI-Synth/optimal-fullobs-v0", "datasets/minigrid/BabyAI-Synth/optimal-v0", "datasets/minigrid/BabyAI-SynthLoc/index", "datasets/minigrid/BabyAI-SynthLoc/optimal-fullobs-v0", "datasets/minigrid/BabyAI-SynthLoc/optimal-v0", "datasets/minigrid/BabyAI-SynthSeq/index", "datasets/minigrid/BabyAI-SynthSeq/optimal-fullobs-v0", "datasets/minigrid/BabyAI-SynthSeq/optimal-v0", "datasets/minigrid/BabyAI-UnblockPickup/index", "datasets/minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnblockPickup/optimal-v0", "datasets/minigrid/BabyAI-UnlockLocal/index", "datasets/minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnlockLocal/optimal-v0", "datasets/minigrid/BabyAI-UnlockLocalDist/index", "datasets/minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnlockLocalDist/optimal-v0", "datasets/minigrid/BabyAI-UnlockPickup/index", "datasets/minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnlockPickup/optimal-v0", "datasets/minigrid/BabyAI-UnlockPickupDist/index", "datasets/minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnlockPickupDist/optimal-v0", "datasets/minigrid/index", "datasets/mujoco/ant/expert-v0", "datasets/mujoco/ant/index", "datasets/mujoco/index", "index", "release_notes/index", "tutorials/dataset_creation/README", "tutorials/dataset_creation/custom_space_serialization", "tutorials/dataset_creation/index", "tutorials/dataset_creation/observation_space_subseting", "tutorials/dataset_creation/point_maze_dataset", "tutorials/index", "tutorials/using_datasets/IQL_torchrl", "tutorials/using_datasets/README", "tutorials/using_datasets/behavioral_cloning", "tutorials/using_datasets/index"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["404.md", "README.md", "api/data_collector.md", "api/data_collector/episode_buffer.md", "api/data_collector/episode_metadata_callback.md", "api/data_collector/step_data_callback.md", "api/minari_dataset/episode_data.md", "api/minari_dataset/minari_dataset.md", "api/minari_dataset/minari_storage.md", "api/minari_dataset/step_data.md", "api/minari_functions.md", "api/namespace/namespace.md", "content/basic_usage.md", "content/dataset_standards.md", "content/minari_cli.md", "datasets/D4RL/antmaze/index.md", "datasets/D4RL/antmaze/large-diverse-v1.md", "datasets/D4RL/antmaze/large-play-v1.md", "datasets/D4RL/antmaze/medium-diverse-v1.md", "datasets/D4RL/antmaze/medium-play-v1.md", "datasets/D4RL/antmaze/umaze-diverse-v1.md", "datasets/D4RL/antmaze/umaze-v1.md", "datasets/D4RL/door/cloned-v2.md", "datasets/D4RL/door/expert-v2.md", "datasets/D4RL/door/human-v2.md", "datasets/D4RL/door/index.md", "datasets/D4RL/hammer/cloned-v2.md", "datasets/D4RL/hammer/expert-v2.md", "datasets/D4RL/hammer/human-v2.md", "datasets/D4RL/hammer/index.md", "datasets/D4RL/index.md", "datasets/D4RL/kitchen/complete-v2.md", "datasets/D4RL/kitchen/index.md", "datasets/D4RL/kitchen/mixed-v2.md", "datasets/D4RL/kitchen/partial-v2.md", "datasets/D4RL/minigrid/fourrooms-random-v0.md", "datasets/D4RL/minigrid/fourrooms-v0.md", "datasets/D4RL/minigrid/index.md", "datasets/D4RL/pen/cloned-v2.md", "datasets/D4RL/pen/expert-v2.md", "datasets/D4RL/pen/human-v2.md", "datasets/D4RL/pen/index.md", "datasets/D4RL/pointmaze/index.md", "datasets/D4RL/pointmaze/large-dense-v2.md", "datasets/D4RL/pointmaze/large-v2.md", "datasets/D4RL/pointmaze/medium-dense-v2.md", "datasets/D4RL/pointmaze/medium-v2.md", "datasets/D4RL/pointmaze/open-dense-v2.md", "datasets/D4RL/pointmaze/open-v2.md", "datasets/D4RL/pointmaze/umaze-dense-v2.md", "datasets/D4RL/pointmaze/umaze-v2.md", "datasets/D4RL/relocate/cloned-v2.md", "datasets/D4RL/relocate/expert-v2.md", "datasets/D4RL/relocate/human-v2.md", "datasets/D4RL/relocate/index.md", "datasets/minigrid/BabyAI-ActionObjDoor/index.md", "datasets/minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-ActionObjDoor/optimal-v0.md", "datasets/minigrid/BabyAI-BlockedUnlockPickup/index.md", "datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-v0.md", "datasets/minigrid/BabyAI-BossLevel/index.md", "datasets/minigrid/BabyAI-BossLevel/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-BossLevel/optimal-v0.md", "datasets/minigrid/BabyAI-BossLevelNoUnlock/index.md", "datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-v0.md", "datasets/minigrid/BabyAI-FindObjS5/index.md", "datasets/minigrid/BabyAI-FindObjS5/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-FindObjS5/optimal-v0.md", "datasets/minigrid/BabyAI-FindObjS6/index.md", "datasets/minigrid/BabyAI-FindObjS6/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-FindObjS6/optimal-v0.md", "datasets/minigrid/BabyAI-FindObjS7/index.md", "datasets/minigrid/BabyAI-FindObjS7/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-FindObjS7/optimal-v0.md", "datasets/minigrid/BabyAI-GoTo/index.md", "datasets/minigrid/BabyAI-GoTo/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoTo/optimal-v0.md", "datasets/minigrid/BabyAI-GoToDoor/index.md", "datasets/minigrid/BabyAI-GoToDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToDoor/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocal/index.md", "datasets/minigrid/BabyAI-GoToLocal/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocal/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS5N2/index.md", "datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N2/index.md", "datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N3/index.md", "datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N4/index.md", "datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS7N4/index.md", "datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS7N5/index.md", "datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N2/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N3/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N4/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N5/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N6/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N7/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObj/index.md", "datasets/minigrid/BabyAI-GoToObj/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObj/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjDoor/index.md", "datasets/minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjDoor/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMaze/index.md", "datasets/minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMaze/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeOpen/index.md", "datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS4/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS5/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS6/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS7/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjS4/index.md", "datasets/minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjS4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjS6/index.md", "datasets/minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjS6/optimal-v0.md", "datasets/minigrid/BabyAI-GoToOpen/index.md", "datasets/minigrid/BabyAI-GoToOpen/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToOpen/optimal-v0.md", "datasets/minigrid/BabyAI-GoToRedBall/index.md", "datasets/minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToRedBall/optimal-v0.md", "datasets/minigrid/BabyAI-GoToRedBallGrey/index.md", "datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-v0.md", "datasets/minigrid/BabyAI-GoToRedBallNoDists/index.md", "datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-v0.md", "datasets/minigrid/BabyAI-GoToRedBlueBall/index.md", "datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-v0.md", "datasets/minigrid/BabyAI-GoToSeq/index.md", "datasets/minigrid/BabyAI-GoToSeq/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToSeq/optimal-v0.md", "datasets/minigrid/BabyAI-GoToSeqS5R2/index.md", "datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridor/index.md", "datasets/minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridor/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R1/index.md", "datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R2/index.md", "datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R3/index.md", "datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS4R3/index.md", "datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS5R3/index.md", "datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS6R3/index.md", "datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-v0.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/index.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/index.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0.md", "datasets/minigrid/BabyAI-OneRoomS12/index.md", "datasets/minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OneRoomS12/optimal-v0.md", "datasets/minigrid/BabyAI-OneRoomS16/index.md", "datasets/minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OneRoomS16/optimal-v0.md", "datasets/minigrid/BabyAI-OneRoomS20/index.md", "datasets/minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OneRoomS20/optimal-v0.md", "datasets/minigrid/BabyAI-OneRoomS8/index.md", "datasets/minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OneRoomS8/optimal-v0.md", "datasets/minigrid/BabyAI-Open/index.md", "datasets/minigrid/BabyAI-Open/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-Open/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoor/index.md", "datasets/minigrid/BabyAI-OpenDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoor/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorColor/index.md", "datasets/minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorColor/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorDebug/index.md", "datasets/minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorDebug/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorLoc/index.md", "datasets/minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorLoc/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/index.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/index.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/index.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/index.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0.md", "datasets/minigrid/BabyAI-OpenRedBlueDoors/index.md", "datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-v0.md", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/index.md", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0.md", "datasets/minigrid/BabyAI-OpenRedDoor/index.md", "datasets/minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenRedDoor/optimal-v0.md", "datasets/minigrid/BabyAI-OpenTwoDoors/index.md", "datasets/minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenTwoDoors/optimal-v0.md", "datasets/minigrid/BabyAI-Pickup/index.md", "datasets/minigrid/BabyAI-Pickup/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-Pickup/optimal-v0.md", "datasets/minigrid/BabyAI-PickupAbove/index.md", "datasets/minigrid/BabyAI-PickupAbove/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PickupAbove/optimal-v0.md", "datasets/minigrid/BabyAI-PickupLoc/index.md", "datasets/minigrid/BabyAI-PickupLoc/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PickupLoc/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextLocal/index.md", "datasets/minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextLocal/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextLocalS5N3/index.md", "datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextLocalS6N4/index.md", "datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS4N1/index.md", "datasets/minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS4N1/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS5N1/index.md", "datasets/minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS5N1/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS5N2/index.md", "datasets/minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS5N2/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS6N3/index.md", "datasets/minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS6N3/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS7N4/index.md", "datasets/minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS7N4/optimal-v0.md", "datasets/minigrid/BabyAI-Synth/index.md", "datasets/minigrid/BabyAI-Synth/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-Synth/optimal-v0.md", "datasets/minigrid/BabyAI-SynthLoc/index.md", "datasets/minigrid/BabyAI-SynthLoc/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-SynthLoc/optimal-v0.md", "datasets/minigrid/BabyAI-SynthSeq/index.md", "datasets/minigrid/BabyAI-SynthSeq/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-SynthSeq/optimal-v0.md", "datasets/minigrid/BabyAI-UnblockPickup/index.md", "datasets/minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnblockPickup/optimal-v0.md", "datasets/minigrid/BabyAI-UnlockLocal/index.md", "datasets/minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnlockLocal/optimal-v0.md", "datasets/minigrid/BabyAI-UnlockLocalDist/index.md", "datasets/minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnlockLocalDist/optimal-v0.md", "datasets/minigrid/BabyAI-UnlockPickup/index.md", "datasets/minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnlockPickup/optimal-v0.md", "datasets/minigrid/BabyAI-UnlockPickupDist/index.md", "datasets/minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnlockPickupDist/optimal-v0.md", "datasets/minigrid/index.md", "datasets/mujoco/ant/expert-v0.md", "datasets/mujoco/ant/index.md", "datasets/mujoco/index.md", "index.md", "release_notes/index.md", "tutorials/dataset_creation/README.rst", "tutorials/dataset_creation/custom_space_serialization.rst", "tutorials/dataset_creation/index.rst", "tutorials/dataset_creation/observation_space_subseting.rst", "tutorials/dataset_creation/point_maze_dataset.rst", "tutorials/index.rst", "tutorials/using_datasets/IQL_torchrl.rst", "tutorials/using_datasets/README.rst", "tutorials/using_datasets/behavioral_cloning.rst", "tutorials/using_datasets/index.rst"], "indexentries": {"__call__() (in module minari.episodemetadatacallback)": [[4, "minari.EpisodeMetadataCallback.__call__", false]], "__call__() (in module minari.stepdatacallback)": [[5, "minari.StepDataCallback.__call__", false]], "__len__() (in module minari.data_collector.episodebuffer)": [[3, "minari.data_collector.EpisodeBuffer.__len__", false]], "action (minari.stepdata attribute)": [[9, "minari.StepData.action", false]], "action_space (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.action_space", false]], "actions (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.actions", false]], "actions (minari.episodedata attribute)": [[6, "minari.EpisodeData.actions", false]], "add_step_data() (in module minari.data_collector.episodebuffer)": [[3, "minari.data_collector.EpisodeBuffer.add_step_data", false]], "add_to_dataset() (in module minari.datacollector)": [[2, "minari.DataCollector.add_to_dataset", false]], "apply() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.apply", false]], "close() (in module minari.datacollector)": [[2, "minari.DataCollector.close", false]], "combine_datasets() (in module minari)": [[10, "minari.combine_datasets", false]], "create_dataset() (in module minari.datacollector)": [[2, "minari.DataCollector.create_dataset", false]], "create_dataset_from_buffers() (in module minari)": [[10, "minari.create_dataset_from_buffers", false]], "create_namespace() (in module minari.namespace)": [[11, "minari.namespace.create_namespace", false]], "data_path (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.data_path", false]], "datacollector (class in minari)": [[2, "minari.DataCollector", false]], "delete_dataset() (in module minari)": [[10, "minari.delete_dataset", false]], "delete_namespace() (in module minari.namespace)": [[11, "minari.namespace.delete_namespace", false]], "download_dataset() (in module minari)": [[10, "minari.download_dataset", false]], "download_namespace_metadata() (in module minari.namespace)": [[11, "minari.namespace.download_namespace_metadata", false]], "episode_indices (minari.minaridataset attribute)": [[7, "minari.MinariDataset.episode_indices", false]], "episodebuffer (class in minari.data_collector)": [[3, "minari.data_collector.EpisodeBuffer", false]], "episodedata (class in minari)": [[6, "minari.EpisodeData", false]], "episodemetadatacallback (class in minari)": [[4, "minari.EpisodeMetadataCallback", false]], "filter_episodes() (in module minari.minaridataset)": [[7, "minari.MinariDataset.filter_episodes", false]], "get_episode_metadata() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.get_episode_metadata", false]], "get_episodes() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.get_episodes", false]], "get_namespace_metadata() (in module minari.namespace)": [[11, "minari.namespace.get_namespace_metadata", false]], "get_normalized_score() (in module minari)": [[10, "minari.get_normalized_score", false]], "get_size() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.get_size", false]], "id (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.id", false]], "id (minari.episodedata attribute)": [[6, "minari.EpisodeData.id", false]], "info (minari.stepdata attribute)": [[9, "minari.StepData.info", false]], "infos (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.infos", false]], "infos (minari.episodedata attribute)": [[6, "minari.EpisodeData.infos", false]], "iterate_episodes() (in module minari.minaridataset)": [[7, "minari.MinariDataset.iterate_episodes", false]], "list_local_datasets() (in module minari)": [[10, "minari.list_local_datasets", false]], "list_local_namespaces() (in module minari.namespace)": [[11, "minari.namespace.list_local_namespaces", false]], "list_remote_datasets() (in module minari)": [[10, "minari.list_remote_datasets", false]], "list_remote_namespaces() (in module minari.namespace)": [[11, "minari.namespace.list_remote_namespaces", false]], "load_dataset() (in module minari)": [[10, "minari.load_dataset", false]], "metadata (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.metadata", false]], "minaridataset (class in minari)": [[7, "minari.MinariDataset", false]], "minaristorage (class in minari.dataset.minari_storage)": [[8, "minari.dataset.minari_storage.MinariStorage", false]], "new() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.new", false]], "observation (minari.stepdata attribute)": [[9, "minari.StepData.observation", false]], "observation_space (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.observation_space", false]], "observations (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.observations", false]], "observations (minari.episodedata attribute)": [[6, "minari.EpisodeData.observations", false]], "read() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.read", false]], "recover_environment() (in module minari.minaridataset)": [[7, "minari.MinariDataset.recover_environment", false]], "reset() (in module minari.datacollector)": [[2, "minari.DataCollector.reset", false]], "rewards (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.rewards", false]], "sample_episodes() (in module minari.minaridataset)": [[7, "minari.MinariDataset.sample_episodes", false]], "seed (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.seed", false]], "set_seed() (in module minari.minaridataset)": [[7, "minari.MinariDataset.set_seed", false]], "spec (minari.minaridataset attribute)": [[7, "minari.MinariDataset.spec", false]], "split_dataset() (in module minari)": [[10, "minari.split_dataset", false]], "step() (in module minari.datacollector)": [[2, "minari.DataCollector.step", false]], "stepdata (class in minari)": [[9, "minari.StepData", false]], "stepdatacallback (class in minari)": [[5, "minari.StepDataCallback", false]], "terminations (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.terminations", false]], "terminations (minari.episodedata attribute)": [[6, "minari.EpisodeData.terminations", false]], "total_episodes (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.total_episodes", false]], "total_episodes (minari.minaridataset attribute)": [[7, "minari.MinariDataset.total_episodes", false]], "total_steps (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.total_steps", false]], "total_steps (minari.minaridataset attribute)": [[7, "minari.MinariDataset.total_steps", false]], "truncations (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.truncations", false]], "truncations (minari.episodedata attribute)": [[6, "minari.EpisodeData.truncations", false]], "update_dataset_from_buffer() (in module minari.minaridataset)": [[7, "minari.MinariDataset.update_dataset_from_buffer", false]], "update_episode_metadata() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.update_episode_metadata", false]], "update_episodes() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.update_episodes", false]], "update_from_storage() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.update_from_storage", false]], "update_metadata() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.update_metadata", false]], "upload_namespace() (in module minari.namespace)": [[11, "minari.namespace.upload_namespace", false]]}, "objects": {"minari": [[2, 0, 1, "", "DataCollector"], [6, 0, 1, "", "EpisodeData"], [4, 0, 1, "", "EpisodeMetadataCallback"], [7, 0, 1, "", "MinariDataset"], [9, 0, 1, "", "StepData"], [5, 0, 1, "", "StepDataCallback"], [10, 1, 1, "", "combine_datasets"], [10, 1, 1, "", "create_dataset_from_buffers"], [10, 1, 1, "", "delete_dataset"], [10, 1, 1, "", "download_dataset"], [10, 1, 1, "", "get_normalized_score"], [10, 1, 1, "", "list_local_datasets"], [10, 1, 1, "", "list_remote_datasets"], [10, 1, 1, "", "load_dataset"], [10, 1, 1, "", "split_dataset"]], "minari.DataCollector": [[2, 1, 1, "", "add_to_dataset"], [2, 1, 1, "", "close"], [2, 1, 1, "", "create_dataset"], [2, 1, 1, "", "reset"], [2, 1, 1, "", "step"]], "minari.EpisodeData": [[6, 2, 1, "", "actions"], [6, 2, 1, "", "id"], [6, 2, 1, "", "infos"], [6, 2, 1, "", "observations"], [6, 2, 1, "", "terminations"], [6, 2, 1, "", "truncations"]], "minari.EpisodeMetadataCallback": [[4, 1, 1, "", "__call__"]], "minari.MinariDataset": [[7, 2, 1, "", "episode_indices"], [7, 1, 1, "", "filter_episodes"], [7, 1, 1, "", "iterate_episodes"], [7, 1, 1, "", "recover_environment"], [7, 1, 1, "", "sample_episodes"], [7, 1, 1, "", "set_seed"], [7, 2, 1, "", "spec"], [7, 2, 1, "", "total_episodes"], [7, 2, 1, "", "total_steps"], [7, 1, 1, "", "update_dataset_from_buffer"]], "minari.StepData": [[9, 2, 1, "", "action"], [9, 2, 1, "", "info"], [9, 2, 1, "", "observation"]], "minari.StepDataCallback": [[5, 1, 1, "", "__call__"]], "minari.data_collector": [[3, 0, 1, "", "EpisodeBuffer"]], "minari.data_collector.EpisodeBuffer": [[3, 1, 1, "", "__len__"], [3, 2, 1, "", "actions"], [3, 1, 1, "", "add_step_data"], [3, 2, 1, "", "id"], [3, 2, 1, "", "infos"], [3, 2, 1, "", "observations"], [3, 2, 1, "", "rewards"], [3, 2, 1, "", "seed"], [3, 2, 1, "", "terminations"], [3, 2, 1, "", "truncations"]], "minari.dataset.minari_storage": [[8, 0, 1, "", "MinariStorage"]], "minari.dataset.minari_storage.MinariStorage": [[8, 2, 1, "", "action_space"], [8, 1, 1, "", "apply"], [8, 2, 1, "", "data_path"], [8, 1, 1, "", "get_episode_metadata"], [8, 1, 1, "", "get_episodes"], [8, 1, 1, "", "get_size"], [8, 2, 1, "", "metadata"], [8, 1, 1, "", "new"], [8, 2, 1, "", "observation_space"], [8, 1, 1, "", "read"], [8, 2, 1, "", "total_episodes"], [8, 2, 1, "", "total_steps"], [8, 1, 1, "", "update_episode_metadata"], [8, 1, 1, "", "update_episodes"], [8, 1, 1, "", "update_from_storage"], [8, 1, 1, "", "update_metadata"]], "minari.namespace": [[11, 1, 1, "", "create_namespace"], [11, 1, 1, "", "delete_namespace"], [11, 1, 1, "", "download_namespace_metadata"], [11, 1, 1, "", "get_namespace_metadata"], [11, 1, 1, "", "list_local_namespaces"], [11, 1, 1, "", "list_remote_namespaces"], [11, 1, 1, "", "upload_namespace"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "function", "Python function"], "2": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:class", "1": "py:function", "2": "py:attribute"}, "terms": {"": [2, 4, 5, 10, 12, 13, 14, 16, 17, 18, 19, 20, 32, 315, 317, 319, 320, 322, 324], "0": [2, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 317, 319, 320, 322, 324], "000": [320, 322], "0003": 322, "005": 322, "01": 315, "0123456789abcdefghijklmnopqrstuvwxyzabcdeeeffghijklmnnoopqrrssttuvwxyzz": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "03ac13": [14, 314], "04": 315, "05": 315, "07": 315, "07219": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "08": 315, "09": 315, "0x11f2608b0": 317, "0x12253a940": 317, "0x7efc65a29ca0": 116, "0x7efcbee4aca0": 242, "0x7efd7b247b80": 279, "0x7efddb405c10": 170, "0x7efe998e9dc0": 173, "0x7effac429ca0": 161, "0x7f00ae429dc0": 60, "0x7f029a947dc0": 267, "0x7f07219c7c10": 141, "0x7f0784908dc0": 155, "0x7f0837b4aca0": 179, "0x7f09b7789dc0": 281, "0x7f0aa27838b0": 36, "0x7f0c82e28b80": 258, "0x7f0d21507b80": 72, "0x7f0d8ca28dc0": 125, "0x7f0e320caca0": 239, "0x7f0f32447dc0": 198, "0x7f15151c7b80": 84, "0x7f16b37c6c10": 122, "0x7f1917f29ca0": 104, "0x7f1b04666b80": 153, "0x7f1f89c48dc0": 248, "0x7f1fc88a6c10": 192, "0x7f2040bc4b80": 123, "0x7f2084266dc0": 80, "0x7f226f54aca0": 191, "0x7f2289ca7dc0": 309, "0x7f25bb8a9ca0": 113, "0x7f26f8b89dc0": 284, "0x7f28b8386c10": 77, "0x7f28f3b47b80": 291, "0x7f29fbf48ca0": 246, "0x7f2a6ab47c10": 144, "0x7f2cc1988ca0": 146, "0x7f2e134c8ca0": 56, "0x7f2f8b947c10": 102, "0x7f2faa6c7dc0": 270, "0x7f32e4787dc0": 260, "0x7f3427907dc0": 237, "0x7f342ed09dc0": 275, "0x7f3566987b80": 204, "0x7f365f9c7c10": 57, "0x7f367f947dc0": 62, "0x7f3749b87c10": 87, "0x7f3b43e69ca0": 89, "0x7f42fd187c10": 117, "0x7f4640ac7dc0": 206, "0x7f465c7cad30": 59, "0x7f46af3c8b80": 300, "0x7f46de4eaca0": 236, "0x7f49dc9c7c10": 108, "0x7f4cc34aaca0": 233, "0x7f4f3ae29ca0": 101, "0x7f4f4c584b80": 288, "0x7f4f6b467c10": 225, "0x7f50a1aa7c10": 120, "0x7f5108a67c10": 147, "0x7f5160389dc0": 272, "0x7f541c326c10": 180, "0x7f5877fc8b80": 75, "0x7f5b40627c10": 90, "0x7f5d0958bca0": 308, "0x7f5dc48e7c10": 114, "0x7f5e58388ca0": 221, "0x7f5e81086b80": 174, "0x7f5eba849ca0": 224, "0x7f5f0d628c10": 222, "0x7f62ae045b80": 255, "0x7f62d4ae9ca0": 110, "0x7f643d325c10": 138, "0x7f67b7f27dc0": 71, "0x7f69462a9dc0": 278, "0x7f6950fc6b80": 150, "0x7f698a589ca0": 86, "0x7f6a2e28aca0": 164, "0x7f6a533c5a60": 216, "0x7f6d847c7b80": 294, "0x7f6f3cd8aca0": 200, "0x7f6ff9327b80": 207, "0x7f703e047dc0": 152, "0x7f7082f08dc0": 128, "0x7f7449846c10": 132, "0x7f760f187b80": 69, "0x7f7742d07ca0": 240, "0x7f783b4c7c10": 96, "0x7f78d24c7b80": 285, "0x7f7957446c10": 195, "0x7f79de4c8b80": 177, "0x7f79f27c6c10": 162, "0x7f7ce7148ca0": 143, "0x7f7f92227c10": 99, "0x7f8010349ca0": 107, "0x7f8598f07dc0": 203, "0x7f85ef947c10": 135, "0x7f884c62aca0": 137, "0x7f8935c48dc0": 257, "0x7f8a5a187c10": 264, "0x7f8b290a6dc0": 290, "0x7f8b2b4aadc0": 263, "0x7f8c2994aca0": 230, "0x7f8e11286c10": 303, "0x7f8e78449ca0": 92, "0x7f8eadf27dc0": 231, "0x7f8f85307b80": 213, "0x7f90e6049dc0": 251, "0x7f923a14bca0": 266, "0x7f92a3086dc0": 201, "0x7f956fd48dc0": 158, "0x7f9633d2c040": 35, "0x7f97d8987b80": 210, "0x7f9819027b80": 81, "0x7f99c1887b80": 63, "0x7f9a08186dc0": 243, "0x7f9f13827c10": 111, "0x7f9f7d4a8ca0": 140, "0x7fa02be8aca0": 245, "0x7fa0c5cabca0": 269, "0x7fa816867c10": 306, "0x7fa82b585a60": 78, "0x7fa85ed28dc0": 66, "0x7fa8ae028ca0": 134, "0x7fa9c5b47ca0": 234, "0x7faa1e9c9ca0": 302, "0x7faf39987dc0": 68, "0x7fb109b49dc0": 305, "0x7fb2dca48b80": 159, "0x7fb53b986c10": 168, "0x7fb53e64aca0": 197, "0x7fb5adaa9ca0": 98, "0x7fb7891c9ca0": 119, "0x7fb919f27b80": 261, "0x7fb9babc9ca0": 131, "0x7fbd2dc48dc0": 299, "0x7fc2fe186dc0": 218, "0x7fc60d2e4b80": 171, "0x7fc7a864aca0": 182, "0x7fc85e9c7b80": 282, "0x7fc89f328dc0": 165, "0x7fc8d3c85c10": 254, "0x7fc8f5789ca0": 65, "0x7fccb5e88b80": 126, "0x7fceb0e86c10": 215, "0x7fd28cc6aca0": 188, "0x7fd3114a8b80": 249, "0x7fd5f6f27c10": 105, "0x7fd69f847c10": 287, "0x7fd7e6b07dc0": 209, "0x7fd88a787b80": 219, "0x7fd95a108dc0": 176, "0x7fda1a5c6b80": 156, "0x7fde6e2a7dc0": 83, "0x7fe2063c7c10": 297, "0x7fe350f26c10": 189, "0x7fe428f48b80": 273, "0x7fe8cbf06c10": 183, "0x7fe91bbc6c10": 186, "0x7fea970e6dc0": 293, "0x7feb44f27c10": 252, "0x7feb8b68aca0": 185, "0x7fed94067b80": 276, "0x7fee9ca27dc0": 74, "0x7fefa57c9ca0": 167, "0x7ff04bfcaca0": 194, "0x7ff3708a9ca0": 95, "0x7ff3ba6c8dc0": 227, "0x7ff435ac7c10": 93, "0x7ff883227dc0": 212, "0x7ff8e2406dc0": 149, "0x7ff9a5c88ca0": 296, "0x7ffb4cf88b80": 228, "0x7ffbb8a47b80": 129, "1": [2, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 322, 324], "10": [12, 13, 134, 188, 315, 317, 319, 320, 322], "100": [2, 10, 12, 14, 38, 39, 40, 314, 315, 322], "1000": [12, 16, 17, 18, 19, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 322], "1000000": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 314], "1000070": 35, "10010": 36, "1006729": 12, "10087": [25, 29, 41, 54], "101": 315, "10174": 35, "102": 315, "10269": 137, "10292": 138, "10295": 275, "104": 315, "10418": 237, "10452": 276, "105": [311, 315], "10525": 230, "10645": 231, "107": 315, "1077": [14, 314], "108": 315, "10852": 279, "109": 315, "1096": [12, 14, 314], "10_000": [320, 322], "11": [59, 281, 305, 308, 315], "110": 315, "1103": 12, "110390": 176, "11044": 278, "110708": 177, "110887": 195, "111": 315, "111764": 194, "112": 315, "11310": 28, "116": 315, "11956": 32, "12": [12, 203, 204, 315], "12066": 264, "12090": 263, "121": 315, "123": [12, 315, 320], "124": 315, "126": 315, "128": [315, 322, 324], "129": 315, "13": [12, 68, 140, 191, 284, 315], "130": 315, "132": 315, "13210": [49, 50], "133": 315, "13518": 246, "13527": 243, "13568": 252, "13573": 242, "13653": 251, "137": 315, "13735": 245, "139": 315, "14": [35, 36, 315], "1400": 322, "14062": 299, "14071": 300, "14129": 281, "14194": 282, "1430": [20, 21], "144": 315, "148": 315, "14883": 173, "15": [12, 200], "151": 315, "153": 315, "15416": 174, "155": 315, "156560": [33, 34], "157": 315, "158": 315, "15817": 303, "16": [71, 143, 176, 194, 206, 207, 230, 233, 236, 239, 242, 245, 251, 257], "160": 315, "161": 315, "162": 315, "163": 315, "164": 315, "16468": 302, "165": 315, "167": 315, "169": 315, "16x16": 317, "17": [12, 315], "170": 315, "17077": 207, "1709": [25, 29, 41, 54], "171": 315, "172": 315, "17233": 206, "17574": 284, "17640": 285, "177": 315, "17967": 179, "17971": 180, "18": [12, 315], "183": 315, "1872": 322, "19": [12, 31, 56, 74, 80, 146, 315], "1910": 32, "196": 315, "19641": 197, "19687": 198, "19694": 305, "19764": 306, "1_000": [322, 324], "1e": 320, "1f": 322, "2": [2, 10, 12, 15, 16, 17, 18, 19, 20, 21, 25, 29, 30, 31, 32, 33, 34, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 86, 87, 89, 90, 104, 105, 137, 138, 173, 174, 182, 183, 197, 198, 230, 231, 233, 234, 278, 279, 317, 319, 322], "20": [12, 209, 210, 315, 322], "200": [22, 23, 24, 26, 27, 28, 51, 52, 53], "2000000": 311, "2004": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "2017": [25, 29, 41, 54], "2019": 32, "2020": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "2021": [15, 322], "2022": 315, "2023": 315, "2024": 315, "2026": 311, "2059": 12, "21": 12, "211": 315, "218": 315, "22": [12, 15, 62, 65, 77, 125, 128, 131, 155, 170, 215, 218, 221, 224, 227, 254, 287, 290, 293, 296, 299, 302, 315], "224": 315, "22608": 134, "23": 12, "239": 315, "24": [14, 25, 29, 38, 39, 40, 41, 54, 322], "240": 315, "241": 315, "244": 315, "24458": 135, "245": 315, "248": 315, "249": 315, "2498": 152, "25": [12, 14, 24, 25, 28, 29, 40, 41, 53, 54, 314, 315, 322], "2500": [149, 150], "2506": 153, "251": 315, "252": 315, "253": 315, "254": 315, "255": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317], "256": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 322, 324], "257": 315, "259": 315, "26": [26, 27, 28, 315], "26083": 309, "261": 315, "262": 315, "264": 315, "26545": 308, "266": 315, "267": 315, "268": [15, 315], "27": [16, 17, 18, 19, 20, 21, 315], "27634": 209, "27824": 210, "28": [12, 22, 23, 24, 315], "280": 31, "28723": 257, "28749": 258, "29": 315, "29248": 140, "2937": 86, "29617": 68, "29790": 69, "29981": 141, "29992": 216, "2d": [15, 30], "2f": 322, "3": [2, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317, 322], "30": [51, 52, 53, 322], "30147": 215, "305": 315, "3092": 87, "31": 315, "32": 324, "3360": [43, 44], "33974": 60, "34": 315, "34387": 59, "3546": 90, "3601": 89, "3606": 26, "3653": 93, "3736": [14, 38], "37446": 143, "3753": 92, "3758": 51, "3768": 95, "3822": 96, "38624": 144, "38971": 71, "39": [12, 22, 23, 24, 51, 52, 53], "39844": 155, "39896": 72, "4": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 314, 317, 319, 320], "40746": 156, "40928": 200, "41364": 201, "42": [317, 319, 322, 324], "4209": 31, "4316": 98, "43527": 183, "4356": [14, 314], "4358": 22, "43630": 182, "4438": 101, "4456": 102, "45": [14, 38, 39, 40, 322], "450": [33, 34], "4505": 99, "46": [26, 27, 28], "46049": 291, "4636": 248, "46541": 290, "4702": 249, "4752": [45, 46], "480": 322, "4866": 122, "49093": 287, "4929": 105, "4957": 164, "4958": [14, 39], "4992": 107, "499206": [14, 39], "4994": 108, "5": [12, 14, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 320, 322], "50": [22, 25, 26, 29, 38, 41, 51, 54, 320, 322], "500": 324, "5000": [12, 14, 23, 27, 40, 52, 314, 322], "500000": [14, 38], "5025": 12, "50307": 288, "5063": 165, "5065": 123, "5066": 104, "5071": 111, "5080": 116, "50_000": 322, "5152": 117, "5158": 113, "5173": 110, "52": 315, "5217": 114, "52366": 78, "5251": 119, "52531": 77, "52700": 254, "5297": 158, "5316": 80, "5373": 84, "54": 315, "5409": 81, "5429": 120, "5436": 83, "5440": 159, "54757": 297, "55": 315, "56141": 132, "56411": 296, "56806": 255, "57": 315, "5733": 167, "5738": 239, "5751": 240, "57564": 131, "5769": 212, "5807": 162, "5874": 213, "5893": 168, "5897": 234, "59": [31, 33, 34], "590": 36, "59130": 146, "5915": 161, "5939": 126, "5956": 125, "59577": 147, "5971": 233, "6": [12, 59, 71, 72, 89, 90, 92, 93, 95, 96, 116, 117, 143, 144, 194, 195, 269, 270, 281, 282, 305, 308, 315], "60": 315, "6000": 311, "60202": 75, "604": 14, "605": 12, "6199": 260, "621": [33, 34], "6210": 261, "62345": 185, "6241": 56, "6242": 57, "62651": 186, "62960": 74, "638": 14, "65395": 188, "65517": 189, "6687": 227, "6729": [12, 14, 24, 314], "6810": 228, "69": 322, "7": [12, 14, 31, 33, 34, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 314, 315, 317, 322], "700": [20, 21], "7009": 267, "7030": 266, "71": 315, "72292": 129, "73": 315, "7314": 219, "73446": 170, "7351": 218, "73718": 128, "7379": 225, "73810": 171, "7399": 224, "75": 315, "75695": 293, "76225": 294, "77": 315, "7824": 273, "7858": 222, "7882": 272, "8": [12, 15, 16, 17, 18, 19, 20, 21, 30, 42, 83, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 158, 161, 164, 167, 200, 201, 212, 260, 263, 311, 315, 320], "80": [16, 17, 18, 19, 315], "8055": 221, "80946": 62, "81715": 191, "82": 315, "82424": 192, "83": 315, "83170": 63, "8366": 269, "84": 315, "8428": 270, "84759": 65, "86": 315, "87": 315, "87126": 66, "88": 315, "884": 322, "9": [12, 31, 33, 34, 173, 197, 200, 201, 248, 275, 278], "90": [20, 21, 315], "900": 322, "92": 315, "93": 315, "95": 315, "9525": [47, 48], "96": 315, "99": [315, 320, 322], "9942": 53, "9950": 236, "9958": 203, "9994": 204, "A": [2, 8, 13, 32, 314, 320, 322], "And": 324, "As": [6, 13, 315, 320, 324], "At": [16, 17, 18, 19, 20], "But": [317, 322], "By": [320, 322], "For": [1, 2, 10, 11, 12, 13, 30, 315, 317, 320, 324], "If": [2, 7, 8, 10, 11, 12, 13, 14, 315, 317, 320, 322], "In": [12, 13, 315, 317, 319, 320, 322, 324], "It": [10, 315, 320, 322], "No": 317, "Not": [14, 22, 23, 24, 26, 27, 28, 38, 39, 40, 51, 52, 53], "On": [13, 320, 322], "The": [2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 314, 315, 317, 319, 320, 324], "Then": [317, 320, 322], "There": [12, 25, 29, 41, 54, 322], "These": [10, 14, 25, 29, 30, 32, 41, 42, 54, 315, 320], "To": [1, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 322, 324], "With": 14, "_": [2, 12, 317, 319, 320, 322, 324], "_0": 320, "__call__": [4, 5, 319, 320], "__init__": [320, 324], "__len__": 3, "_build": 1, "_check_valid_cel": 320, "_gen_miss": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317], "_index_0": 315, "_index_1": 315, "_max": 10, "_min": 10, "_score": 10, "_script": 315, "a1efe4": [14, 314], "a256f8": 14, "a5a5a1": 14, "a_hat": 324, "a_pr": 324, "a_t": 322, "ab": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "abil": 12, "abl": [12, 42], "abort": 14, "about": [1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317], "abov": [12, 315, 317, 319, 322], "abspath": 324, "abstract": 12, "ac": 324, "access": [8, 12, 14, 315, 320], "account": [11, 320], "accumul": [16, 17, 18, 19, 20, 21, 320, 324], "accumulated_rew": 324, "accur": 322, "achiev": [12, 320, 324], "achieved_go": [16, 17, 18, 19, 20, 21, 31, 33, 34, 43, 44, 45, 46, 47, 48, 49, 50, 319, 320], "achieved_goal_cel": 320, "acrobot": 12, "across": [10, 13, 315], "act": 315, "action": [2, 3, 5, 6, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "action_id": 320, "action_idx": 320, "action_spac": [2, 8, 10, 12, 13, 315, 317, 319, 320, 324], "action_space_subset": 319, "action_spec": 322, "actionobjdoor": [56, 57, 310], "activ": [15, 322], "activation_class": 322, "activation_fn": 322, "actor": 322, "actor_extractor": 322, "actor_mlp": 322, "actor_modul": 322, "actor_net": 322, "acttyp": [2, 10], "actual": 320, "actuat": [30, 42], "ad": [5, 7, 8, 10, 12, 13, 43, 44, 45, 46, 47, 48, 49, 50, 315, 319], "adam": [15, 322, 324], "adapt": [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309], "add": [2, 3, 4, 5, 7, 8, 14, 43, 44, 45, 46, 47, 48, 49, 50, 315, 320, 322], "add_step_data": 3, "add_to_dataset": [2, 12], "addit": [2, 5, 7, 11, 12, 13, 315], "addition": [15, 315], "additional_dataset": 315, "additional_group": 315, "additional_wrapp": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "address": 320, "adher": 315, "adjust": 320, "adroit_door": [22, 23, 24], "adroit_h": 14, "adroit_hamm": [26, 27, 28], "adroit_hand": [14, 22, 23, 24, 26, 27, 28, 38, 39, 40, 51, 52, 53], "adroit_pen": [14, 38, 39, 40], "adroit_reloc": [51, 52, 53], "adroithanddoor": [12, 13, 22, 23, 24, 25, 30, 315], "adroithanddoorenv": [22, 23, 24], "adroithandhamm": [26, 27, 28, 29, 30, 315], "adroithandhammerenv": [26, 27, 28], "adroithandpen": [14, 30, 38, 39, 40, 41, 315, 322], "adroithandpenenv": [38, 39, 40], "adroithandreloc": [30, 51, 52, 53, 54, 315], "adroithandrelocateenv": [51, 52, 53], "advantag": [320, 322], "after": [2, 4, 6, 9, 10, 13, 14, 315, 320, 324], "again": [16, 17, 18, 19, 20, 21], "agent": [9, 15, 16, 17, 18, 19, 20, 37, 42, 43, 44, 45, 46, 47, 48, 49, 50, 319, 320, 322, 324], "aggress": 320, "agnost": [2, 322], "aim": [13, 320, 322], "al": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320, 322], "alex": [12, 16, 17, 18, 19, 20, 21], "alexdavei": 315, "alexdavey0": [16, 17, 18, 19, 20, 21], "algo": 324, "algorithm": [2, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 322], "algorithm_nam": [2, 10, 12, 13, 317, 319, 320, 324], "all": [8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 30, 31, 32, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 314, 315, 317, 321, 322, 324], "allow": [12, 13, 315, 320, 324], "alon": 320, "along": [30, 42], "alreadi": [8, 12, 14, 315, 319, 320, 322], "also": [10, 12, 14, 16, 17, 18, 19, 20, 21, 314, 315, 317, 319, 320, 322], "alwai": 320, "among": 315, "amount": [12, 320], "amp": 315, "an": [4, 7, 10, 11, 12, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320, 322], "andrea": 311, "ani": [2, 5, 6, 7, 8, 9, 10, 11, 12, 315, 319, 320], "annot": 315, "anoth": [2, 5, 8, 12, 13, 25, 29, 41, 54, 320, 322], "anssi": 15, "ant": [16, 17, 18, 19, 20, 21, 30, 311, 313], "ant_maze_v4": [16, 17, 18, 19, 20, 21], "ant_v5": 311, "antenv": 311, "antmaz": [12, 16, 17, 18, 19, 20, 21], "antmaze_larg": [15, 17], "antmaze_large_diverse_gr": [15, 16], "antmaze_medium": [15, 19], "antmaze_medium_diverse_gr": [15, 18], "antmaze_umaz": [15, 20, 21], "antmazeenv": [16, 17, 18, 19, 20, 21], "antonin": 15, "apart": 315, "api": [11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 320, 324], "appear": [12, 315], "append": [3, 8, 12, 315, 322], "appli": [8, 317], "applic": [12, 315], "appreci": 315, "approach": 320, "appropri": 13, "approx": 322, "approxim": 322, "apr": [15, 42, 320], "apt": 322, "ar": [2, 6, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 320, 322], "arang": 322, "aravind": [25, 29, 41, 54], "aravindr93": 14, "arbitrari": [13, 315], "arbitrarili": 13, "arena": [47, 48], "arg": [14, 315, 320, 322], "argmax": [320, 324], "argument": [4, 5, 10, 12, 13, 315], "argv": 324, "around": [317, 322], "arrai": [10, 13, 320], "arrow": [13, 315], "arxiv": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "as_tensor": 324, "ashlei": 15, "assert": [22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 317, 324], "assign": 10, "associ": 13, "attach": 13, "attempt": 322, "attr": 315, "attribut": [2, 4, 10, 12, 13, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "authent": 11, "author": [2, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 320, 324], "author_email": [2, 10, 12, 13, 315, 317, 320, 324], "auto": [315, 322, 324], "auto_cast_to_devic": 322, "autobuild": 1, "autogener": 315, "automat": [1, 2, 13, 315], "autoreset": 14, "auxiliari": 2, "avail": [7, 10, 12, 14, 314, 315, 317, 322], "averag": [2, 10, 322], "avg": 322, "avjmachin": 315, "avoid": [315, 322], "awai": 315, "ax": 322, "axi": [30, 42, 320, 322], "b": [1, 14, 314], "b64encod": 322, "babyai": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 310, 315], "babyaimissionspac": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "back": [317, 320], "background": 315, "backpropag": 322, "backward": [322, 324], "badg": 315, "balanc": 324, "balisujohn": 315, "ball": [15, 30, 42, 54, 320], "bamboofungu": 315, "bar": 14, "base": [12, 14, 315, 320, 322], "base64": 322, "base_env": 322, "baselin": 15, "baselines3": [15, 324], "basi": 315, "basic": [315, 322], "batch": [322, 324], "batch_first": 324, "batch_siz": [322, 324], "becaus": [15, 16, 17, 18, 19, 20, 21, 42, 322], "been": [12, 42, 315], "befor": [2, 12, 317, 320, 322], "begin": [16, 17, 18, 19, 20, 324], "behav": 322, "behavior": [315, 320, 321, 322, 325], "behavioral_clon": 324, "behaviour": 322, "being": [2, 10, 13, 31, 32, 33, 34, 42, 43, 45, 47, 49], "bellman": 320, "bellow": 315, "belong": 5, "below": [14, 320, 322], "benchmark": [30, 322], "best": 322, "best_model": 324, "beta": [315, 322], "between": [10, 43, 45, 47, 49, 320], "bias": 320, "big": 315, "binari": 13, "bind": 320, "bit": [320, 322], "black": 315, "blob": [317, 320], "block": 322, "blockedunlockpickup": [59, 60, 310], "blue": [242, 243, 245, 246, 322], "board": 29, "bool": [2, 5, 7, 10, 11, 315, 322], "boolean": 10, "bosslevel": [62, 63, 310], "bosslevelnounlock": [65, 66, 310], "bot": [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309], "both": [8, 13, 14, 317, 319], "bottom": 33, "bound": [13, 320, 322], "box": [12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 324], "break": [12, 315, 320, 324], "bucket": [12, 13, 314, 315], "buffer": [2, 3, 7, 8, 10, 12, 315], "bug": 315, "bugfix": 315, "build": [14, 315], "burner": 33, "c": [12, 16, 18, 32, 315], "cabinet": [31, 32, 34], "cach": [2, 12, 315, 322], "calcul": [10, 322], "call": [2, 5, 12, 13, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "callabl": [2, 7, 8, 10, 12, 315, 317], "callback": [2, 4, 5, 315, 319, 320], "can": [2, 4, 5, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "capabl": 12, "captur": 322, "care": 317, "cart": 324, "cartesian": 13, "cartpol": [11, 12, 315, 324], "case": [12, 315, 320], "cd": [1, 12], "cell": [16, 18, 320], "cell_rowcol_to_xi": 320, "cell_to_st": 320, "cell_xy_to_rowcol": 320, "center": 14, "certain": [7, 12, 41], "cff": 315, "challeng": [15, 322], "chang": [1, 11, 315, 320], "changelog": 315, "characterist": [2, 320], "charg": 315, "charset": [13, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "check": [12, 14, 315, 320], "checkpoint": 315, "choic": 322, "choos": [13, 317, 319], "chosen": 320, "ci": 315, "citat": 315, "class": [2, 3, 4, 5, 6, 7, 8, 9, 13, 315, 319, 320, 322, 324], "classic": [12, 320, 324], "classic_control": 12, "classif": 324, "clean": 317, "clear": 2, "clear_episode_buff": 315, "cli": [314, 315], "clip": 320, "clone": [1, 12, 14, 25, 29, 41, 54, 314, 315, 321, 322, 325], "close": [2, 32, 320, 322, 324], "cloud": [12, 13, 315], "cmmcirvin": 315, "code": [2, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 321, 322, 324], "code_permalink": [2, 10, 12, 13, 317, 320, 324], "codelink": 315, "colab": 322, "collate_fn": 324, "collect": [2, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 314, 315, 317, 318, 321, 322], "collector": [2, 320], "collector_env": [315, 320], "collis": 320, "color": [14, 221, 222, 314], "com": [1, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320], "combin": [315, 320], "combine_dataset": [10, 12, 315], "combined_dataset": 10, "come": [13, 14], "command": [12, 14, 315, 324], "commit": 315, "common": [12, 13], "compar": [6, 319], "comparison": 10, "compat": [10, 12, 14, 315, 324], "compatible_minari_vers": 10, "complement": 2, "complet": [10, 32, 33, 34, 315, 322], "complex": [15, 25, 29, 30, 41, 54, 315], "compli": 315, "compliant": [13, 315], "compon": 320, "component_1": 315, "component_2": 315, "compris": 12, "comput": [2, 10, 12, 13, 322], "compute_act": 320, "compute_reward_matrix": 320, "compute_transition_matrix": 320, "concaten": 322, "condit": [7, 12, 315, 322], "configur": [32, 315, 322], "confirm": [14, 322], "conflict": 322, "conjunct": 322, "consid": [8, 315, 320, 322], "consider": 315, "consist": [13, 42, 322], "constantli": 315, "construct": 320, "contact": [11, 12, 317, 324], "contain": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "content": [13, 14], "continu": [10, 12, 13, 42, 43, 44, 45, 46, 47, 48, 49, 50, 320], "continuing_task": [16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50, 320], "contribut": [1, 12, 315, 320], "contributor": 315, "control": [12, 15, 42, 43, 44, 45, 46, 47, 48, 49, 50, 315, 322, 324], "conveni": 322, "convent": 315, "convers": [315, 317], "convert": [2, 320, 322], "coordin": 320, "copi": [315, 322], "core": 317, "corl": 322, "corr": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "correct": [315, 320, 322], "correspond": [2, 10, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 320, 324], "could": [15, 322], "cover": 322, "coverag": 315, "cpu": 322, "creat": [2, 5, 7, 8, 13, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 322, 324], "create_dataset": [2, 12, 315, 317, 319, 320, 324], "create_dataset_from_buff": [10, 12, 13, 315], "create_dataset_from_collector_env": 315, "create_namespac": 11, "creation": [2, 12, 13, 315], "cross": 324, "crossentropyloss": 324, "cuda": 322, "cumul": [320, 322], "curat": 315, "current": [5, 10, 13, 14, 315, 320, 322], "current_cel": 320, "current_control_target_id": 320, "current_control_target_xi": 320, "current_st": 320, "custom": [2, 4, 12, 315, 318, 320, 321], "custom_space_seri": 317, "customstepdatacallback": 5, "customsubsetstepdatacallback": 319, "cython": 315, "d": [12, 322], "d3rlpy": 315, "d4rl": [10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 314, 315, 318, 321, 322], "da": 320, "dampen": 320, "dapg": [14, 23, 24, 25, 27, 28, 29, 39, 40, 41, 52, 53, 54], "data": [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 314, 315, 317, 322, 324], "data_collector": 319, "data_format": [2, 8, 10, 315], "data_path": 8, "data_url": 322, "databas": [10, 11, 14], "databefor": 2, "dataclass": [8, 315], "datacollector": [4, 12, 13, 315, 317, 319, 320, 324], "datacollectorv0": 315, "dataload": [12, 315, 324], "datas": 8, "dataset": [2, 4, 5, 6, 7, 11, 15, 25, 29, 30, 32, 37, 41, 42, 54, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 314, 315, 317, 319, 322], "dataset_cr": [315, 317, 320], "dataset_id": [2, 10, 11, 12, 13, 315, 317, 319, 320, 322, 324], "dataset_nam": [2, 10, 13, 14, 320], "dataset_s": 315, "dataset_v1": 315, "dataset_v2": 315, "dataset_v3": 315, "datasets_to_combin": [10, 315], "davei": [12, 16, 17, 18, 19, 20, 21], "de": [12, 14, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 51, 52, 53], "debug": [224, 225, 233, 234, 239, 240], "decent": 322, "decod": 322, "deep": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "def": [5, 317, 319, 320, 322, 324], "default": [2, 5, 7, 8, 10, 11, 12, 13, 315, 322], "default_interaction_typ": 322, "defin": [10, 13, 317, 319, 324], "definit": 315, "del": [317, 319], "deleg": 315, "delet": [317, 319], "delete_dataset": [10, 317, 319], "delete_namespac": 11, "demonstr": [22, 24, 25, 26, 28, 29, 31, 32, 38, 40, 41, 51, 53, 54, 322], "dens": [14, 22, 23, 24, 26, 27, 28, 38, 39, 40, 42, 51, 52, 53, 315, 322], "depend": [12, 13, 315], "deprec": 315, "descent": 322, "describ": [11, 13, 315], "descript": [2, 10, 11, 13, 14, 15, 25, 29, 30, 32, 37, 41, 42, 54, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 312, 313, 315], "deseri": 317, "deserialize_custom_spac": 317, "deserialize_spac": 317, "design": 322, "desir": [32, 320], "desired_cel": 320, "desired_go": [16, 17, 18, 19, 20, 21, 31, 33, 34, 43, 44, 45, 46, 47, 48, 49, 50, 319, 320], "detail": 322, "detect": 315, "determin": 320, "determinist": [12, 320, 322], "develop": 315, "deviat": [13, 320], "devic": [14, 322], "dexter": [25, 29, 41, 54], "df8ff078652a": [15, 42, 320], "dict": [2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 31, 33, 34, 35, 36, 43, 44, 45, 46, 47, 48, 49, 50, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317, 319], "dict_kei": 319, "dictionari": [2, 3, 5, 7, 8, 9, 10, 12, 13, 315, 318, 320, 321, 322], "differ": [10, 12, 13, 42, 315, 317, 320, 322], "dimens": [322, 324], "dimension": [13, 25, 29, 41, 54], "dir": 315, "direct": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317, 322], "directli": [12, 315, 320, 322, 324], "directori": [2, 8, 11, 12, 322], "dirhtml": 1, "disabl": 2, "disable_env_check": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "discount": 320, "discret": [13, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317, 320, 324], "disk": [8, 12, 13, 315, 317, 319, 324], "displai": [315, 322, 324], "dist": 320, "distanc": [43, 45, 47, 49], "distractor": [302, 303, 308, 309], "distribut": [25, 29, 41, 54, 322], "distribution_class": 322, "distribution_kwarg": 322, "divers": [12, 15], "divid": [12, 320], "do": [320, 322], "doc": [1, 315, 317, 320], "document": [12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "doe": 315, "doesn": [8, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320], "dof": [15, 25, 29, 30, 41, 54, 322], "domain": [15, 25, 29, 30, 41, 42, 54], "don": [13, 315, 317, 319, 320], "done": [12, 320, 322, 324], "door": [10, 12, 13, 14, 22, 23, 24, 30, 32, 314, 315], "doors_open": [128, 129, 131, 132, 155, 156], "dormann": 15, "dot": [320, 322], "doubl": 322, "doubletofloat": 322, "down": 320, "download": [13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 321, 322, 324], "download_dataset": 10, "download_namespace_metadata": 11, "driven": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "drop": 315, "dt": 320, "dtype": [315, 319, 320, 322], "due": [315, 320], "dump": 317, "dure": [12, 13, 315, 320, 322], "dynam": 320, "e": [1, 7, 10, 12, 315, 322], "e731": 317, "each": [2, 4, 5, 6, 8, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 319, 320, 322, 324], "earlier": 317, "edit": [2, 5], "effect": [25, 29, 41, 54], "effici": 315, "element": [6, 13], "elif": 320, "elimin": 320, "ell": 322, "elliottow": 315, "els": [12, 315, 320, 322], "email": [2, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "embed": 322, "empti": [11, 317, 320], "emptyenv": 317, "enabl": 317, "encapsul": 13, "encount": 317, "encourag": [13, 315], "end": [13, 315], "enerrio": 315, "enh": 315, "enhanc": 315, "ensur": 322, "entri": 320, "entropi": 324, "entry_point": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "env": [2, 5, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "env_id": 322, "env_nam": [2, 10, 13], "env_spec": [8, 13], "envid": 2, "environ": [2, 5, 6, 7, 8, 9, 10, 13, 14, 25, 29, 30, 32, 37, 41, 54, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 314, 315, 317, 319, 320, 324], "environment_st": 5, "envspec": [2, 8, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "eol": 315, "ep": 12, "episod": [2, 3, 4, 6, 7, 8, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "episode_0": 315, "episode_1": 315, "episode_2": 315, "episode_id": [12, 315], "episode_indic": [7, 8, 12], "episode_metadata_callback": [2, 4], "episode_reward": 322, "episodebuff": [7, 8, 10], "episodedata": [7, 12, 315], "episodemetadatacallback": [2, 13, 315], "episodes_gener": 12, "epoch": 324, "epsiodedata": 8, "equal": [2, 10, 13], "equat": 320, "equiv": 322, "equlival": 320, "ernestu": 15, "error": [10, 315, 317, 320, 322], "essenti": 322, "estim": [2, 10, 322], "et": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320, 322], "etc": 322, "euclidean": [43, 45, 47, 49], "evad": 320, "eval_env": [2, 7, 10, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "eval_env_spec": [12, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "eval_interv": 322, "eval_reward_log": 322, "eval_td": 322, "evalu": [2, 7, 10, 12, 315, 322, 324], "evaluate_polici": 322, "everi": [1, 10, 12, 13, 21, 320, 322], "everyth": 322, "exampl": [2, 10, 11, 12, 13, 14, 315, 317, 320, 321, 322], "example_env": 322, "except": [8, 315, 317, 322], "excit": 315, "execut": 324, "exerpt": 315, "exist": [8, 11, 14, 315, 319, 320], "exit": 14, "expect": 319, "expectil": 322, "experienc": 315, "experiment": 11, "expert": [2, 10, 12, 13, 14, 15, 22, 25, 26, 29, 36, 37, 38, 41, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 312, 314, 315, 322, 324], "expert_dataset": 311, "expert_polici": [2, 10], "expertpolici": [36, 324], "explain": [315, 320], "explicit": [315, 322], "explicitli": 315, "explor": 315, "exploration_act": 320, "explorationtyp": 322, "exponenti": [43, 45, 47, 49], "export": [12, 315], "extend": [12, 319], "extra": [2, 4, 5, 315, 320], "extract": 322, "extrapol": 322, "f": [12, 14, 315, 317, 319, 322, 324], "f01e2c": 14, "f4bf75": 14, "face": [11, 12], "facilit": [10, 12, 315], "factor": 320, "factori": 3, "fail": [16, 17, 18, 19, 20, 21, 315], "fals": [2, 7, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 317, 319, 320, 322, 324], "familiar": 322, "farama": [1, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 320, 322, 324], "favor": 315, "fc1": 324, "fc2": 324, "fc3": 324, "featur": [11, 12, 314, 315, 324], "fed000": 14, "few": 315, "ff00ff": [14, 314], "ffmpeg": 322, "field": [13, 315, 322], "fig": 322, "figsiz": 322, "figur": 322, "file": [2, 4, 11, 12, 13, 14, 314, 315, 319], "file_fold": 315, "filter": [7, 10, 314, 315], "filter_dataset": [12, 315], "filter_episod": [7, 12, 315], "final": [6, 12, 15, 315, 317, 319, 320, 322], "final_scor": 322, "find": 319, "findobjs5": [68, 69, 71, 72, 74, 75, 310], "findobjs6": [71, 72, 310], "findobjs7": [74, 75, 310], "fine": [14, 23, 25, 27, 29, 39, 41, 52, 54, 311, 312], "first": [11, 12, 315, 317, 319, 320, 322], "first_color": [242, 243, 245, 246], "fit": [319, 322], "fix": [21, 30, 42, 315, 322], "flag": [10, 315, 322], "flatten": 315, "flexibl": 12, "flip": [16, 17, 18, 19, 20, 21, 32], "float": [2, 8, 10, 13, 319, 322], "float32": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 311, 315, 320, 324], "float64": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 311, 319, 322], "floppy_disk": 315, "folder": [1, 324], "follow": [2, 5, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 320, 322], "font": [14, 314], "forc": [10, 14, 30, 42, 320], "force_download": [10, 315], "form": [10, 13, 320], "format": [2, 8, 10, 12, 13, 315, 317], "formula": [10, 320], "forward": [11, 13, 322, 324], "found": [10, 13], "foundat": [1, 12, 14, 30, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320], "four": 324, "fourroom": [30, 37], "fourroomsenv": [35, 36], "fp": 322, "frac": 10, "frame": 322, "framework": 322, "franka_kitchen": [31, 33, 34], "frankakitchen": [30, 31, 32, 33, 34, 315], "from": [2, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "from_pixel": 322, "froze": 315, "fu": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "full": [4, 8, 12, 36, 37, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308, 315, 322], "fulli": 315, "fullob": [55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307], "fullyobswrapp": [56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308], "function": [7, 8, 10, 12, 13, 14, 35, 36, 42, 43, 44, 45, 46, 47, 48, 49, 50, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317, 320, 322, 324], "fundament": [15, 42, 320], "futur": [11, 315, 320], "g": [10, 12, 21, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 322], "gain": 320, "gamma": [320, 322], "gather": 322, "gcp": [11, 12, 13, 314, 315], "gen_dataset_md": 315, "gener": [2, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 314, 315, 317, 319, 320], "generate_path": 320, "get": [7, 8, 10, 12, 315, 317, 319, 320, 322, 324], "get_episod": 8, "get_episode_metadata": [8, 13], "get_namespace_metadata": 11, "get_next_st": 320, "get_normalized_scor": [2, 10, 315], "get_q_valu": 320, "get_siz": 8, "git": [1, 12], "github": [1, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 312, 315, 317, 320], "give": [12, 13, 14, 320, 322], "given": [12, 13, 14], "gleav": 15, "global": [2, 13, 320], "global_target_id": 320, "global_target_xi": 320, "glr": 315, "gmail": [16, 17, 18, 19, 20, 21, 35, 36], "go": [1, 320], "goal": [15, 16, 17, 18, 19, 20, 21, 32, 36, 37, 42, 43, 44, 45, 46, 47, 48, 49, 50, 317, 319, 320, 322], "goal_cel": 320, "goe": [36, 37], "googl": [12, 13, 315, 322], "goto": [77, 78, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 155, 156, 310], "gotodoor": [80, 81, 310], "gotoloc": [83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 310], "gotolocals5n2": [86, 87, 310], "gotolocals6n2": [89, 90, 310], "gotolocals6n3": [92, 93, 310], "gotolocals6n4": [95, 96, 310], "gotolocals7n4": [98, 99, 310], "gotolocals7n5": [101, 102, 310], "gotolocals8n2": [104, 105, 310], "gotolocals8n3": [107, 108, 310], "gotolocals8n4": [110, 111, 310], "gotolocals8n5": [113, 114, 310], "gotolocals8n6": [116, 117, 310], "gotolocals8n7": [119, 120, 310], "gotoobj": [122, 123, 149, 150, 152, 153, 310], "gotoobjdoor": [125, 126, 310], "gotoobjmaz": [128, 129, 310], "gotoobjmazeopen": [131, 132, 310], "gotoobjmazes4": [134, 135, 310], "gotoobjmazes4r2": [137, 138, 310], "gotoobjmazes5": [140, 141, 310], "gotoobjmazes6": [143, 144, 310], "gotoobjmazes7": [146, 147, 310], "gotoobjs4": [149, 150, 310], "gotoobjs6": [152, 153, 310], "gotoopen": [155, 156, 310], "gotoredbal": [158, 159, 310], "gotoredballgrei": [161, 162, 310], "gotoredballnodist": [164, 165, 310], "gotoredbluebal": [167, 168, 310], "gotoseq": [170, 171, 173, 174, 310], "gotoseqs5r2": [173, 174, 310], "gradient": 322, "grahamannett": 315, "greater": [12, 315], "green": [317, 322], "grid": 320, "gridworld": 37, "group": [2, 4, 10, 12, 13, 14, 30, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 315, 320], "grow": 315, "gt": 315, "guarante": 13, "gupta": 32, "gym": [2, 5, 7, 10, 12, 315, 317, 319, 320, 322, 324], "gymansium": 12, "gymenv": 322, "gymnaisum": 14, "gymnasium": [2, 5, 7, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "gymnasium_robot": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53], "gynasium": 315, "h5py": 315, "ha": [12, 21, 42, 315, 320, 322], "hammer": [26, 27, 28, 30, 315], "hand": [13, 16, 18, 25, 29, 41, 54, 320, 322], "hand_dapg": [14, 25, 29, 30, 41, 54], "handl": [8, 12, 314], "hard": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "hat": 322, "hausman": 32, "have": [12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "hdf5": [2, 4, 8, 13, 14, 314, 315, 319, 320], "help": [14, 315, 320], "helper": 322, "here": [322, 324], "hesit": 315, "hf": [10, 12, 315], "hidden": 315, "hidden_s": 322, "hierarch": 12, "high": [25, 29, 41, 54, 315, 319, 320, 322], "higher": 320, "highli": 315, "hill": 15, "hood": 322, "horizon": 32, "host": [12, 14, 25, 29, 30, 32, 41, 54, 314], "how": [1, 2, 315, 317, 319, 320, 322, 324], "howev": [13, 42, 315, 317, 320, 322, 324], "howuhh": 315, "href": 14, "html": 322, "http": [1, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 312, 315, 317, 320, 324], "hub": [12, 315], "hug": [11, 12], "huggingfac": [12, 315], "human": [10, 12, 13, 14, 22, 25, 26, 29, 38, 41, 51, 54, 314, 315, 322, 324], "hyperparamet": 322, "hypothet": [2, 10], "i": [1, 2, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 314, 315, 317, 319, 322, 324], "id": [2, 3, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 320, 324], "idea": 315, "identifi": [2, 10, 11, 13], "ignor": [315, 322], "im": 315, "imag": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317, 322], "imit": [22, 25, 26, 29, 32, 38, 41, 51, 54], "implement": [14, 15, 320, 322], "implicit": [321, 325], "implicitli": 322, "import": [2, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322], "import_bugfix": 315, "improv": [315, 322], "imshow": 322, "in_kei": 322, "includ": [6, 12, 13, 31, 32, 34, 42, 315, 322], "incompat": 14, "incorrect": [8, 315], "increas": 6, "indic": [2, 7, 8, 10, 12, 315], "inf": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 311, 319], "infer": 322, "influenc": [320, 322], "info": [2, 3, 5, 6, 9, 12, 13, 315, 320, 324], "inform": [1, 2, 5, 7, 13, 315, 320], "infos_dataset": 315, "infos_subgroup": 315, "init": 315, "initi": [2, 6, 7, 12, 13, 315, 317, 319, 320, 322, 324], "initialis": 322, "input": [5, 7, 12, 13, 322, 324], "input_dim": 324, "insid": 317, "inspir": 320, "instabl": 320, "instal": [1, 10, 14, 314, 315, 317, 322, 324], "instanc": [7, 315], "instanti": 14, "instead": [12, 13, 315, 320, 322], "instruct": 315, "int": [2, 3, 6, 7, 8, 10, 13, 315, 320], "int64": [315, 324], "int_": [7, 320], "integ": 13, "intend": 7, "interact": 32, "interest": 322, "interfac": 12, "intern": [12, 315], "introduc": [15, 25, 29, 41, 54, 315, 322], "invers": 322, "involv": [30, 42, 320], "ipynb": [317, 319, 320, 322, 324], "ipython": 322, "iql": 322, "iql_torchrl": 322, "iqlloss": 322, "is_avail": 322, "is_shar": 322, "isinst": 324, "isol": 315, "issu": [315, 322], "item": [2, 320, 322, 324], "iter": [7, 8, 12, 13, 15, 42, 320, 322], "iterate_episod": [7, 12, 315], "its": [10, 315, 317, 320, 322], "itself": 12, "j": 320, "jamartinh": 315, "josephcarrino": 315, "journal": 15, "json": [13, 14, 315, 317], "jupyt": [317, 319, 320, 321, 322, 324], "just": [12, 317, 322], "justin": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "k": 32, "k_": 320, "k_d": 320, "k_i": 320, "k_p": 320, "kabuki": 315, "kaixin96": 315, "kallinteri": 311, "kanervisto": 15, "keep": [12, 315], "kei": [2, 5, 8, 10, 11, 12, 14, 315, 319, 320, 322], "kept": 13, "kernel": 322, "kettl": [31, 32, 33, 34], "key_fil": 14, "key_path": 315, "keycorridor": [176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 310], "keycorridors3r1": [179, 180, 310], "keycorridors3r2": [182, 183, 310], "keycorridors3r3": [185, 186, 310], "keycorridors4r3": [188, 189, 310], "keycorridors5r3": [191, 192, 310], "keycorridors6r3": [194, 195, 310], "kitchen": [30, 31, 33, 34, 315], "kitchenenv": [31, 33, 34], "kitsch": 315, "know": 320, "kostrikov": 322, "kumar": 32, "kwarg": [2, 5, 7, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 319], "l": 322, "l2": 322, "l_": 322, "l_2": 322, "l_pi": 322, "l_q": 322, "l_v": 322, "lag": 322, "lambda": [7, 12, 315, 317, 320], "lambert": [15, 42, 320], "larg": [12, 15, 42, 315], "larger": [315, 320, 322], "largest": 315, "last": 315, "last_episode_id": 315, "later": [2, 10, 315, 322], "latest": [10, 14, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 315, 320], "latest_vers": 10, "latter": [10, 13, 322], "layer": 322, "lazcano": [12, 14, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 51, 52, 53], "lazi": 322, "lazylinear": 322, "lead": [13, 16, 17, 18, 19, 20, 21, 320], "learn": [12, 14, 15, 25, 29, 30, 32, 37, 41, 42, 54, 314, 315, 317, 319, 320, 321, 324, 325], "learnin": [15, 42, 320], "leav": 12, "left": [12, 320, 322], "leftarrow": [320, 322], "len": [320, 322], "length": [3, 324], "less": 320, "let": [317, 319, 320, 324], "level": 13, "levin": 32, "lib": 322, "librari": [12, 310, 315, 317, 324], "light": [31, 32, 33, 34], "like": [11, 12, 14, 317, 322, 324], "limit": [320, 322], "linalg": 320, "line": [14, 319], "linear": 324, "link": [2, 10, 12, 13], "linux": 12, "list": [2, 3, 7, 8, 12, 13, 314, 315, 322, 324], "list_local_dataset": [10, 12, 315, 319], "list_local_namespac": 11, "list_remote_dataset": [10, 315], "list_remote_namespac": 11, "ll": [317, 319], "load": [2, 11, 13, 315, 317, 322, 324], "load_dataset": [2, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 324], "loc": [227, 228, 322], "local": [10, 13, 315, 317, 319, 322, 324], "local_dataset": 319, "locat": [12, 15, 16, 17, 18, 19, 20, 21, 30, 42, 43, 44, 45, 46, 47, 48, 49, 50, 320, 322], "log": [315, 322, 324], "logger": 315, "long": [32, 320], "longer": 315, "look": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317], "loop": [12, 322, 324], "loos": 315, "lose": 12, "loss": 324, "loss_actor": 322, "loss_dict": 322, "loss_fn": 324, "loss_funct": 322, "loss_log": 322, "loss_modul": 322, "loss_qvalu": 322, "loss_valu": 322, "lost": 315, "low": [315, 319, 320, 322], "lower": 13, "lr": 322, "lynch": 32, "m_": 322, "machin": [13, 15], "maco": 12, "made": [1, 315], "mai": [11, 12, 320, 322], "main": [2, 7, 311, 315, 317, 320, 322], "main_data": [14, 314, 315], "major": 315, "make": [1, 2, 7, 12, 315, 317, 319, 320, 322, 324], "make_value_estim": 322, "manag": 315, "mandatori": [13, 315], "mani": 13, "manipul": [25, 29, 41, 54, 322], "manual_se": [322, 324], "map": [12, 16, 18, 320, 322], "map_length": 320, "map_width": 320, "margin": 322, "markdown": 315, "markovian": [15, 42], "master": 320, "match": 10, "mathbb": 322, "mathcal": 322, "matplotlib": 322, "matrix": 320, "max": [320, 322], "max_": [320, 322], "max_a": 322, "max_episode_step": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320, 322], "max_step": 322, "maximilian": 15, "maximis": 322, "maximum": [2, 10, 13, 320, 322, 324], "maze": [16, 17, 18, 19, 20, 21, 30, 43, 44, 45, 46, 47, 48, 49, 50, 315, 320], "maze2d": [42, 320], "maze_map": [16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50, 320], "maze_solv": 320, "mb": [8, 12, 14, 314], "md": [1, 315], "mdp": [12, 315], "mean": [6, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320, 322], "meant": [2, 315], "measur": [25, 29, 41, 54, 320], "medium": [12, 15, 42, 315], "memor": [15, 42], "memori": [2, 12, 315], "mention": [13, 315, 320, 324], "merg": 14, "messag": 14, "met": 7, "metadata": [2, 4, 7, 8, 10, 12, 14, 315, 319], "method": [12, 15, 42, 315, 317, 320, 322], "metric": 13, "mgoulao": 315, "microwav": [31, 32, 33, 34], "mimic": 15, "min": 322, "minari": [11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 322, 324], "minari_autose": 2, "minari_data": 322, "minari_dataset": [315, 324], "minari_datasets_path": 13, "minari_remot": [10, 12, 315], "minari_storag": 315, "minari_vers": [13, 315], "minaridataset": [2, 10, 12, 13, 315, 324], "minariexperiencereplai": 322, "minaristorag": [2, 7, 10, 13, 315], "minigrid": [30, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317], "minim": 319, "minimis": 322, "minimum": [2, 10, 12, 13, 315], "minor": 315, "mirana": 319, "misc": 315, "miss": 315, "mission": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317], "mission_func": 317, "missionspac": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317], "missonspac": 317, "mix": [22, 25, 26, 29, 32, 38, 41, 51, 54, 315], "mlp": 322, "model": [311, 312], "modifi": [8, 12, 13, 315, 319], "modul": [317, 319, 320, 322, 324], "modulelist": 322, "moment": 13, "more": [1, 6, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320, 322], "more_dataset": 315, "moreov": [8, 13], "morpholog": 15, "most": [12, 14], "move": [12, 30, 32, 42, 54, 315, 320], "movetwoacross": [197, 198, 200, 201], "movetwoacrosss5n2": [197, 198, 310], "movetwoacrosss8n9": [200, 201, 310], "mp4": 322, "mujoco": [2, 10, 311, 315, 320], "mujuco": 311, "multi": 322, "multibinari": [13, 315], "multidiscret": [13, 315], "multipl": [10, 11, 12, 14, 315, 322], "multiprocess": 315, "must": [5, 7, 8, 10, 12, 13, 315, 322], "my": 12, "n": [7, 12, 13, 14, 320, 324], "n_episod": [7, 12], "n_step": [315, 320], "nail": 29, "name": [2, 10, 11, 12, 13, 14, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308, 314, 315, 317, 324], "namespac": [2, 10, 315], "namespace_metadata": 13, "narrow": [25, 29, 41, 54], "nathan": [15, 42, 320], "navig": [15, 30, 37, 42], "ncol": 322, "ndarrai": [6, 7, 10, 13, 315], "necessari": 322, "need": [8, 12, 315, 317, 319, 320, 322, 324], "neg": [43, 45, 47, 49], "nest": [2, 5, 11, 13, 315], "net": 322, "network": [322, 324], "neural": 324, "never": [32, 33, 320, 322], "new": [2, 8, 10, 12, 16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50, 315, 317, 320, 322, 324], "new_dataset_id": [10, 315], "new_dataset_nam": 14, "newli": [10, 12, 322], "next": [9, 315, 320, 322, 324], "next_cel": 320, "next_episode_id": 315, "next_stat": 320, "nightli": 322, "nn": [322, 324], "no_grad": 322, "noah": 15, "nois": [43, 44, 45, 46, 47, 48, 49, 50, 315, 320], "non": [12, 13, 15, 42], "nondeterminist": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "none": [2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320], "nonetyp": 315, "noqa": 317, "norm": 320, "normal": [2, 322], "normalized_scor": 10, "normalparamextractor": 322, "note": [10, 11, 13, 16, 17, 18, 19, 20, 21, 319, 320, 322], "notebook": [317, 319, 320, 321, 322, 324], "notic": [11, 12], "notimplementederror": 317, "now": [10, 12, 315, 317, 319, 320, 324], "np": [7, 10, 13, 315, 319, 320, 322, 324], "npt": 7, "nrow": 322, "num_act": 320, "num_cel": 322, "num_col": [137, 138, 173, 174], "num_dist": [86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 173, 174], "num_door": [230, 231, 233, 234, 236, 237, 239, 240], "num_episod": [317, 319], "num_episodes_average_scor": [2, 10], "num_epoch": 324, "num_eval_episod": 322, "num_itr": 320, "num_obj": [266, 267, 269, 270], "num_row": [137, 138, 173, 174, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195], "num_stat": 320, "num_step": 2, "number": [2, 6, 7, 10, 12, 13, 14, 315], "numpi": [319, 320, 322, 324], "o": 324, "ob": [2, 5, 12, 315, 320, 324], "object": [7, 8, 9, 12, 25, 29, 32, 37, 41, 54, 315, 317, 322, 324], "objs_per_room": [197, 198, 200, 201, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285], "observ": [2, 3, 5, 6, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "observation_spac": [2, 8, 10, 12, 13, 315, 317, 319, 324], "observation_space_subset": 319, "obstyp": [2, 10], "obtain": [22, 25, 26, 29, 38, 41, 51, 54, 320], "occur": [16, 17, 18, 19, 20, 21], "off": 14, "offici": 315, "offlin": [12, 13, 14, 314, 315, 320, 322, 324], "often": 320, "oibserv": 315, "omar": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "omit": 319, "onc": [1, 12, 320, 322, 324], "one": [2, 6, 7, 8, 12, 25, 29, 41, 42, 54, 315, 322], "one_hot": 324, "onerooms12": [203, 204, 310], "onerooms16": [206, 207, 310], "onerooms20": [209, 210, 310], "onerooms8": [203, 204, 206, 207, 209, 210, 212, 213, 310], "onli": [10, 11, 12, 13, 44, 46, 47, 48, 50, 315, 319, 322], "onlin": 322, "onto": 11, "open": [25, 32, 42, 215, 216, 310, 315, 322], "opendoor": [218, 219, 221, 222, 224, 225, 227, 228, 310], "opendoorcolor": [221, 222, 310], "opendoordebug": [224, 225, 310], "opendoorloc": [227, 228, 310], "opendoorsord": [230, 231, 233, 234, 236, 237, 239, 240], "opendoorsordern2": [230, 231, 310], "opendoorsordern2debug": [233, 234, 310], "opendoorsordern4": [236, 237, 310], "opendoorsordern4debug": [239, 240, 310], "opengl": 322, "openredbluedoor": [242, 243, 310], "openredbluedoorsdebug": [245, 246, 310], "openreddoor": [248, 249, 310], "opentwodoor": [242, 243, 245, 246, 251, 252, 310], "optim": [55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 320, 324], "option": [2, 3, 5, 7, 8, 10, 12, 13, 14, 315], "order": [12, 31, 32, 315, 319], "order_enforc": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "org": [11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320, 324], "organ": [12, 315], "orient": [5, 41, 319], "origin": [10, 12, 25, 29, 30, 32, 41, 42, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 315, 317, 322], "other": [7, 8, 10, 11, 12, 13, 14, 32, 34, 315, 319, 320, 322], "otherwis": [7, 12, 44, 46, 48, 50, 315], "our": [1, 12, 13, 315, 319, 320, 322, 324], "ourselv": 320, "out": [8, 12, 315, 317, 320, 322], "out_featur": 322, "out_kei": 322, "outlin": 319, "output": [8, 317, 319, 320, 322, 324], "output_dim": 324, "outsid": 322, "over": [2, 7, 10, 12, 320, 322], "overal": 322, "overconfid": 322, "overestim": 322, "overrid": [4, 5, 13, 14, 320], "overridden": [4, 5, 10, 315], "overridng": 320, "overshoot": 320, "overview": 322, "overwrit": 11, "own": [10, 12, 315, 320], "p_": 320, "packag": [1, 2, 10, 14, 315, 324], "pad": 324, "pad_sequ": 324, "page": 315, "page_facing_up": 315, "pair": [13, 322], "paper": [25, 29, 41, 54], "paramet": [2, 3, 4, 5, 7, 8, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 322, 324], "parameteris": 322, "part": 322, "partial": [32, 315], "particular": [317, 322], "pass": [2, 4, 7, 10, 12, 319, 322], "past": 315, "path": [8, 10, 11, 12, 13, 14, 43, 44, 45, 46, 47, 48, 49, 50, 315, 320, 324], "path_str": 14, "pathlik": [7, 8], "pbar": 322, "pd": [42, 43, 44, 45, 46, 47, 48, 49, 50, 320], "pen": [14, 30, 38, 39, 40, 315], "per": [2, 315], "perceptron": 322, "perez": [43, 44, 45, 46, 47, 48, 49, 50, 320], "perform": [9, 10, 12, 14, 32, 33, 34, 315, 320, 322, 324], "perimet": [47, 48], "permalink": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "perman": 12, "pettingzoo": 315, "phi": 322, "pi": [320, 322], "pi_": 322, "pick": [16, 18], "pickup": [254, 255, 310], "pickupabov": [257, 258, 310], "pickuploc": [260, 261, 310], "pid": [315, 320], "pip": [1, 2, 10, 12, 13, 14, 314, 317, 322, 324], "pixel": 322, "pixels_onli": 322, "plai": [12, 15], "plan": [315, 319], "planner": [15, 42, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "platform": [12, 13], "pleas": [11, 12, 315, 319], "plot": 322, "plt": 322, "plug": 322, "point": [7, 30, 315, 322], "point_maz": [43, 44, 45, 46, 47, 48, 49, 50], "point_maze_dataset": [315, 320], "pointmaz": [15, 30, 43, 44, 45, 46, 47, 48, 49, 50, 315, 318, 319, 321], "pointmaze_larg": [42, 44], "pointmaze_largedens": [42, 43], "pointmaze_medium": [42, 46, 320], "pointmaze_mediumdens": [42, 45], "pointmaze_open": [42, 48], "pointmaze_opendens": [42, 47], "pointmaze_umaz": [42, 50, 319], "pointmaze_umazedens": [42, 49], "pointmazeenv": [43, 44, 45, 46, 47, 48, 49, 50], "pointmazestepdatacallback": 320, "pole": 324, "polici": [2, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 36, 37, 38, 39, 41, 42, 51, 52, 54, 311, 312, 320, 322], "policy_net": 324, "policynetwork": 324, "polyak": 322, "poorli": 322, "popul": 322, "popular": 314, "pose": [5, 320], "posit": [5, 32, 37, 54, 320, 322], "possibl": [13, 315], "ppo": 324, "pr": 315, "practic": 322, "pre": 315, "precis": 322, "precommit": 315, "predict": [320, 324], "prefix": [10, 315], "prepend": 11, "preprint": 32, "prerequisit": 322, "present": [10, 15, 30, 324], "prevent": 12, "previou": [2, 12, 315], "previous": [15, 315, 320, 324], "principl": 30, "print": [12, 315, 317, 319, 322, 324], "prng": 2, "probabilisticactor": 322, "probabl": 320, "problem": 324, "proce": [14, 324], "procedur": 319, "process": [12, 315, 320, 322], "prod": 324, "produc": 315, "product": 13, "program": 320, "progress": 14, "project": [12, 315], "prompt": [12, 14], "properli": [317, 322], "properti": [7, 322], "proporti": 320, "protonmail": 311, "provid": [10, 12, 13, 14, 15, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 38, 39, 40, 41, 51, 52, 53, 54, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308, 314, 315, 322], "pseudo": 315, "psi": 322, "public": [13, 315, 320], "publicli": 314, "pure": 315, "purpos": [12, 30, 42, 320, 322], "putnext": [272, 273, 275, 276, 278, 279, 281, 282, 284, 285], "putnextloc": [263, 264, 266, 267, 269, 270, 310], "putnextlocals5n3": [266, 267, 310], "putnextlocals6n4": [269, 270, 310], "putnexts4n1": [272, 273, 310], "putnexts5n1": [275, 276, 310], "putnexts5n2": [278, 279, 310], "putnexts6n3": [281, 282, 310], "putnexts7n4": [284, 285, 310], "py": [311, 315, 317, 319, 320, 322, 324], "pyarrow": 315, "pypi": 315, "pyplot": 322, "pyright": 315, "pytest": 315, "python": [12, 314, 315, 317, 319, 320, 321, 322, 324], "python3": 322, "pytorch": [315, 321, 322, 325], "pytorchdataload": 315, "pyvirtualdisplai": 322, "pz": 315, "q": [320, 321, 325], "q_": 322, "q_fn": 320, "q_iter": 320, "q_net": 322, "q_valu": 320, "qiter": [15, 16, 17, 18, 19, 20, 21, 42, 43, 44, 45, 46, 47, 48, 49, 50, 320], "qpo": 320, "quadrup": [15, 30], "quantifi": 322, "queri": 322, "quick": 322, "quickli": 320, "quit": 322, "qvalu": 322, "qvel": 320, "r": [1, 21, 320, 322], "r_t": 322, "raffin": 15, "rais": [8, 10], "rajeswaran": [25, 29, 41, 54], "randn": 320, "random": [2, 7, 10, 12, 17, 19, 20, 37, 42, 43, 44, 45, 46, 47, 48, 49, 50, 317, 319, 320, 322, 324], "random_polici": [317, 319], "randomis": 322, "randomli": [12, 13, 42, 317, 320], "randompolici": 35, "rang": [2, 10, 12, 315, 317, 319, 320, 322, 324], "rate": [16, 17, 18, 19, 20, 21, 320], "rather": 322, "ratio": [22, 25, 26, 29, 38, 41, 51, 54], "rb": 322, "re": [315, 320], "reach": [15, 16, 17, 18, 19, 20, 21, 32, 37, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 315, 320], "read": [8, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 322], "readabl": 13, "readi": 315, "readm": 315, "real": 15, "reason": 320, "rebuild": 1, "receiv": 324, "recent": [12, 322], "recommend": 12, "record": [2, 12, 315, 319, 320], "record_info": [2, 12, 13, 320], "recov": [2, 7, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 322], "recover_env": 315, "recover_environ": [2, 7, 10, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 324], "recoveri": 315, "red": [242, 243, 245, 246], "redtachyon": 315, "reduc": [315, 320], "ref": 10, "ref_max_scor": [2, 10], "ref_min_scor": [2, 10], "refactor": [315, 320], "refer": [2, 10, 315], "referenc": 315, "regener": 37, "regist": 317, "registr": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "registri": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "reinforc": [12, 14, 15, 25, 29, 30, 32, 37, 41, 42, 54, 314, 320], "rel": 315, "relai": [30, 32], "releas": 11, "relev": [2, 10, 12], "reliabl": 15, "reloc": [30, 51, 52, 53, 315], "relu": [322, 324], "rememb": 322, "remot": [10, 11, 12, 13, 14, 314, 315], "remote_path": 10, "remov": [12, 315], "remove_task_when_complet": [31, 33, 34], "renam": 315, "render": 322, "render_mod": 324, "reorgan": 315, "replac": [15, 30, 320], "replai": [12, 315], "replay_buff": 322, "repositori": [10, 13, 14, 23, 24, 25, 27, 28, 29, 30, 32, 39, 40, 41, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309], "repres": [13, 317, 322], "represent": 315, "reproduc": [2, 10, 12, 30, 37, 322, 324], "reproduct": [30, 315], "req": 315, "requir": [1, 2, 10, 12, 13, 14, 315, 317, 319, 320, 322, 324], "research": 15, "reset": [2, 12, 13, 16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50, 315, 317, 319, 320, 322, 324], "reset_target": [16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50], "resid": 11, "residu": 315, "respect": [10, 320, 322], "respond": 320, "respons": 12, "rest": 322, "restart": 322, "result": [10, 315, 317, 320], "results_video": 322, "retriev": [10, 12, 315], "return": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 44, 46, 48, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "rew": [2, 5, 12, 315, 320, 324], "rew_matrix": 320, "reward": [3, 5, 6, 12, 13, 15, 16, 17, 18, 19, 20, 21, 25, 29, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 315, 322, 324], "reward_funct": 320, "reward_threshold": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "reward_typ": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53], "rewards_max": 13, "rewards_mean": 13, "rewards_min": 13, "rewards_std": 13, "rewards_sum": 13, "right": [315, 320, 322], "rl": [12, 14, 23, 25, 27, 29, 39, 41, 52, 54, 315, 322, 324], "rl_zoo3": [315, 324], "rm": 322, "rnd": 315, "rnn": 324, "robot": [14, 15, 25, 29, 30, 41, 42, 54, 315, 319, 320, 322], "rodrigo": [12, 14, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 320], "rodrigodelazcano": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 315], "roll": 322, "rollout": 322, "room_siz": [71, 72, 74, 75, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 173, 174, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285], "root": [12, 13], "row": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "rperezvicent": [14, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 320], "rugged": 315, "run": [12, 22, 25, 26, 29, 38, 41, 51, 54, 315, 322], "s_": 322, "s_t": 322, "sac": [15, 16, 17, 18, 19, 20, 21, 311], "safe": 315, "same": [2, 7, 10, 12, 13, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320, 322], "sampl": [2, 7, 13, 35, 37, 314, 315, 317, 319, 322], "sample_episod": [7, 12, 13, 315], "sampled_episod": 13, "sampler": 322, "samplerwithoutreplac": 322, "save": [4, 13, 315, 317, 319, 320, 322, 324], "save_video": 322, "sb3": 311, "scale": 322, "scale_lb": 322, "scenario": 324, "schedul": [12, 315], "score": [2, 322], "script": [14, 30, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 322, 324], "second": [12, 315], "second_color": [242, 243, 245, 246], "section": [13, 315, 322], "see": [13, 317, 322], "seed": [2, 3, 7, 10, 12, 13, 315, 317, 319, 320, 322, 324], "seen": 320, "select": [16, 17, 18, 19, 20, 25, 29, 41, 42, 54, 315, 320], "select_bi": [221, 222, 224, 225, 227, 228], "self": [2, 3, 4, 5, 7, 8, 319, 320, 324], "separ": 315, "sequenc": [32, 33, 34, 42], "sequenti": 322, "seri": [12, 320], "serial": [13, 315, 318, 321], "serializ": 13, "serialize_custom_spac": 317, "serialize_spac": 317, "serv": 12, "server": [10, 11, 12, 14, 314, 322], "servic": [11, 315], "set": [2, 7, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 315, 320, 322, 324], "set_descript": 322, "set_exploration_typ": 322, "set_se": [7, 12, 322], "set_titl": 322, "set_xlabel": 322, "setpoint": 320, "sever": 13, "shape": [20, 21, 49, 50, 315, 319, 320, 322, 324], "shard": 12, "share": [315, 322], "shift": [13, 322], "should": [2, 317, 319], "show": [12, 314, 315, 317, 319, 322], "shown": [14, 322], "shreyansjainn": 315, "shuffl": 324, "sim": 322, "similarli": [315, 322], "simpl": [12, 315, 320, 322, 324], "simplefilt": 322, "simpli": [317, 320], "sinc": [317, 320, 324], "singl": [3, 6, 9, 10, 12, 14, 315, 322], "size": [8, 10, 12, 14, 314, 315, 320, 322], "skip": [10, 322], "slash": [11, 13], "slice": [7, 8], "slide": [31, 32, 34], "slightli": 315, "slowli": [320, 322], "small": [315, 322], "smaller": [42, 315, 320], "snippet": 12, "so": [12, 13, 320, 322], "soft": 322, "softupd": 322, "solut": 320, "solv": [32, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 320], "solver": 320, "some": [2, 8, 12, 14, 315, 317, 320, 322], "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 315, 317, 319, 320, 321, 322, 324], "space": [2, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 318, 320, 321, 322, 324], "space_dict": 317, "spars": [15, 16, 17, 18, 19, 20, 21, 25, 29, 41, 42, 44, 46, 48, 50, 54], "spec": [2, 7, 10, 13, 14, 315, 317, 322], "specif": [12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 319, 320, 322], "specifi": [2, 7, 8, 10, 12, 13, 315, 322], "speed": [315, 320], "sphinx": 1, "sphinx_github_changelog_token": 315, "sphx": 315, "split": [42, 315], "split_dataset": [10, 12, 315], "split_traj": 322, "squar": 317, "src": 322, "stabil": 320, "stabl": 15, "stable_baselines3": 324, "stack": [6, 13, 315], "stand": [16, 17, 18, 19, 20, 21], "standard": [12, 315, 322], "start": [12, 13, 317, 319, 320, 322, 324], "state": [2, 32, 42, 320, 322], "state_action_valu": 322, "state_to_cel": 320, "state_valu": 322, "statist": 4, "steadi": 320, "step": [2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "step_data": [3, 5, 319, 320], "step_data_callback": [2, 319, 320], "step_data_kei": 5, "stepdata": [3, 5], "stepdatacallback": [2, 13, 315, 318, 321], "stitch": 15, "storag": [8, 10, 12, 13, 315], "store": [2, 8, 10, 12, 13, 315, 319, 322], "str": [2, 5, 8, 9, 10, 11, 13, 317], "straight": [36, 37], "strict": [245, 246], "strictli": 322, "string": [11, 13, 317], "stronger": 320, "structur": [11, 12, 315], "style": [2, 10, 13, 315, 322], "sub": [14, 315], "subcomponent_1": 315, "subcomponent_2": 315, "subdirectori": 13, "subgroup": [315, 320], "subplot": 322, "subsequ": 315, "subset": [315, 318, 321], "subtask": [31, 32, 33, 34], "subtrajectori": [32, 34], "succ": 320, "success": [16, 17, 18, 19, 20, 21, 320, 324], "successfulli": [14, 319], "sudo": 322, "suggest": 315, "sum": 322, "sum_": 320, "summari": [315, 322], "super": [5, 319, 320, 324], "support": [2, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320, 322], "supportsfloat": 2, "suppos": 12, "sure": [14, 315], "surrog": 13, "switch": [31, 32, 33, 34, 315], "sy": 324, "syntax": [2, 10, 13], "synth": [287, 288, 310], "synthloc": [290, 291, 310], "synthseq": [293, 294, 310], "system": 320, "t": [2, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322], "tabl": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "tackl": 322, "take": [7, 13, 317, 320], "taken": [6, 8, 43, 44, 45, 46, 47, 48, 49, 50, 319], "tanh": 322, "tanh_loc": 322, "tanhnorm": 322, "target": [16, 17, 18, 19, 20, 21, 30, 31, 32, 33, 34, 42, 54, 320, 322], "target_net_updat": 322, "task": [10, 12, 15, 25, 29, 32, 34, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 320, 322, 324], "tasks_to_complet": [31, 33, 34], "tau": [320, 322], "td": 322, "team": 11, "temperatur": 322, "templat": 315, "tempor": 322, "temporari": [2, 12, 315, 320], "tensor": [322, 324], "tensordict": 322, "tensordictmodul": 322, "termin": [2, 3, 5, 6, 7, 12, 13, 16, 17, 18, 19, 20, 21, 42, 315, 317, 319, 320, 322, 324], "terminate_on_tasks_complet": [31, 33, 34], "test": [10, 11, 12, 15, 315, 319], "text": [13, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 320], "than": [10, 12, 16, 17, 18, 19, 20, 21, 315, 322], "thank": 315, "thei": [8, 13, 30, 315, 322], "them": [12, 13, 315, 324], "theme": 320, "theori": 320, "therefor": 322, "theta": 322, "thi": [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "thing": [315, 317], "think": 320, "thorough": 315, "those": 322, "thought": 315, "three": [25, 29, 41, 54, 320, 322], "through": [12, 13, 14, 314, 315, 320, 322], "thu": [42, 320], "tight_layout": 322, "time": [1, 2, 10, 320], "timestep": 315, "to_str": 317, "togeth": [10, 12, 14, 32, 33, 322], "tohsin": 315, "token": [11, 315], "tomekst": 315, "tool": [14, 29, 315], "top": [13, 14], "torch": [322, 324], "torchrl": [321, 325], "total": [7, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 320, 322], "total_episod": [7, 8, 12, 13, 315, 324], "total_step": [7, 8, 12, 13, 315, 320], "total_timestep": 315, "touch": [11, 319], "toward": 320, "towardsdatasci": [15, 42, 320], "tqdm": [322, 324], "train": [15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 29, 38, 41, 51, 54, 311, 312, 319], "trainer": 322, "trajectori": [14, 16, 17, 18, 19, 20, 21, 23, 25, 27, 29, 39, 41, 42, 52, 54, 314, 315, 320], "transform": 322, "transformedenv": 322, "transit": [5, 315, 320, 322], "transition_matrix": 320, "tree": 311, "tri": 322, "true": [2, 7, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320, 322, 324], "truncat": [2, 3, 5, 6, 12, 13, 42, 315, 317, 319, 320, 322, 324], "try": [315, 317, 322], "tune": [14, 23, 25, 27, 29, 39, 41, 52, 54, 311, 312, 320, 322], "tupl": [2, 3, 13, 315, 320, 322], "tutori": [315, 317, 319, 320, 322, 324], "tutorials_jupyt": 321, "tutorials_python": 321, "two": [10, 12, 13, 14, 25, 29, 41, 42, 54, 315, 322, 324], "txt": 1, "type": [2, 12, 13, 25, 29, 41, 54, 315, 317, 322, 324], "typer": 14, "typic": 320, "typing_extens": 315, "typo": 315, "u": [14, 20, 21, 49, 50, 315, 322, 324], "uint8": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317, 322], "umaz": [15, 42, 315, 320], "unblockpickup": [296, 297, 310], "under": [10, 13, 42, 315, 322], "undiscount": [10, 13], "unflatten": 315, "unifi": 315, "uniform": 320, "union": [7, 317], "uniqu": 317, "unknown": 315, "unless": 2, "unlik": 322, "unlockloc": [299, 300, 302, 303, 310], "unlocklocaldist": [302, 303, 310], "unlockpickup": [305, 306, 308, 309, 310], "unlockpickupdist": [308, 309, 310], "until": [12, 43, 44, 45, 46, 47, 48, 49, 50], "up": [12, 16, 17, 18, 19, 20, 21, 315, 317, 319, 320, 322, 324], "updat": [2, 8, 12, 315, 320, 322], "update_dataset_from_buff": 7, "update_dataset_from_collector_env": 315, "update_episod": 8, "update_episode_metadata": 8, "update_from_storag": 8, "update_metadata": 8, "upgrad": 322, "upload": 315, "upload_namespac": 11, "upon": 15, "upper": 13, "us": [2, 7, 8, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 315, 317, 319, 320, 322, 324], "usag": [14, 315], "user": [2, 12, 13, 315], "usernam": 12, "usual": 322, "util": [10, 12, 314, 322, 324], "v": [2, 10, 13, 14, 32, 322], "v0": [10, 11, 12, 13, 35, 36, 37, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 319, 320, 324], "v1": [10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 51, 52, 53, 54, 315, 322, 324], "v1_1": 324, "v2": [10, 12, 13, 14, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 314, 315, 322], "v3": [42, 43, 44, 45, 46, 47, 48, 49, 50, 315, 319, 320], "v4": [15, 16, 17, 18, 19, 20, 21], "v5": 311, "v_": [320, 322], "v_fn": 320, "valid": [10, 311, 319, 320, 322], "valu": [2, 5, 6, 8, 10, 12, 13, 44, 46, 48, 50, 315, 320, 322], "value_net": 322, "value_network": 322, "valueerror": 8, "valueoper": 322, "vari": [317, 322, 324], "variabl": [10, 12, 13, 315, 320], "varianc": [43, 44, 45, 46, 47, 48, 49, 50, 320], "variat": 320, "varieti": 12, "variou": [32, 33, 317], "ve": 320, "vector_entry_point": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "veloc": [5, 42, 320], "veri": 12, "version": [2, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 315, 319, 320], "via": [32, 322], "vicent": [43, 44, 45, 46, 47, 48, 49, 50, 320], "video": 322, "video_fold": 322, "viewer_env": 322, "virtual": 322, "virtual_displai": 322, "visibl": 322, "visual": 324, "visualis": 322, "vol": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "wa": [2, 7, 10, 13, 15, 25, 29, 35, 36, 37, 41, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 315, 317], "wai": [12, 320, 322], "wall": [47, 48, 320], "want": [7, 12, 14, 320], "wapoint": 320, "warn": [14, 315, 322], "waypoint": [15, 16, 17, 18, 19, 20, 21, 42, 43, 44, 45, 46, 47, 48, 49, 50], "waypoint_control": 320, "waypoint_target": 320, "waypoint_threshold": 320, "waypointcontrol": 320, "wd": 315, "we": [12, 13, 30, 37, 315, 317, 319, 320, 322, 324], "weight": 322, "well": [12, 13, 14, 314, 315, 320, 322], "were": [10, 12, 14, 25, 29, 30, 32, 41, 42, 54, 315], "what": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320], "when": [7, 12, 13, 16, 17, 18, 19, 20, 21, 42, 43, 44, 45, 46, 47, 48, 49, 50, 315, 317, 319, 320, 322], "where": [2, 8, 10, 13, 32, 34, 315, 320, 322], "whether": 11, "which": [2, 7, 8, 10, 12, 13, 15, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 319, 320, 322, 324], "while": [11, 12, 315, 317, 319, 320, 322, 324], "who": 322, "whose": 322, "willdudlei": 315, "window": 315, "within": [7, 315, 322], "without": [43, 44, 45, 46, 47, 48, 49, 50, 315], "won": [12, 320], "work": [2, 12, 14, 315, 322], "workflow": 315, "world": 15, "worri": 317, "would": [11, 13, 14, 319, 320], "wrap": [2, 12, 315, 320, 322], "wrapper": [2, 4, 12, 13, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308, 315, 317, 320, 322, 324], "wrapperspec": [56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308], "write": [8, 322], "written": 322, "x": [7, 30, 42, 320, 324], "xvfb": 322, "xy": 320, "y": [14, 30, 42, 320, 322], "yml": 315, "you": [7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "youni": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "younik": 315, "younis98": 36, "your": [12, 14, 315, 324], "zero": 320, "zero_grad": [322, 324], "zip": 321, "zoo": 324, "\u898b\u7fd2\u3044": 314}, "titles": ["404 - Page Not Found", "Minari documentation", "DataCollector", "EpisodeBuffer", "EpisodeMetadataCallback", "StepDataCallback", "EpisodeData", "MinariDataset", "MinariStorage", "StepData", "Minari", "Namespace", "Basic Usage", "Dataset Standards", "Minari CLI", "Ant Maze", "Large-Diverse", "Large-Play", "Medium-Diverse", "Medium-Play", "Umaze-Diverse", "Umaze", "Cloned", "Expert", "Human", "Door", "Cloned", "Expert", "Human", "Hammer", "D4RL", "Complete", "Kitchen", "Mixed", "Partial", "Fourrooms-Random", "Fourrooms", "MiniGrid", "Cloned", "Expert", "Human", "Pen", "Point Maze", "Large-Dense", "Large", "Medium-Dense", "Medium", "Open-Dense", "Open", "Umaze-Dense", "Umaze", "Cloned", "Expert", "Human", "Relocate", "BabyAI ActionObjDoor", "Optimal-Fullobs", "Optimal", "BabyAI BlockedUnlockPickup", "Optimal-Fullobs", "Optimal", "BabyAI BossLevel", "Optimal-Fullobs", "Optimal", "BabyAI BossLevelNoUnlock", "Optimal-Fullobs", "Optimal", "BabyAI FindObjS5", "Optimal-Fullobs", "Optimal", "BabyAI FindObjS6", "Optimal-Fullobs", "Optimal", "BabyAI FindObjS7", "Optimal-Fullobs", "Optimal", "BabyAI GoTo", "Optimal-Fullobs", "Optimal", "BabyAI GoToDoor", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocal", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS5N2", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS6N2", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS6N3", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS6N4", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS7N4", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS7N5", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N2", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N3", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N4", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N5", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N6", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N7", "Optimal-Fullobs", "Optimal", "BabyAI GoToObj", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjDoor", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMaze", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeOpen", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS4", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS4R2", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS5", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS6", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS7", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjS4", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjS6", "Optimal-Fullobs", "Optimal", "BabyAI GoToOpen", "Optimal-Fullobs", "Optimal", "BabyAI GoToRedBall", "Optimal-Fullobs", "Optimal", "BabyAI GoToRedBallGrey", "Optimal-Fullobs", "Optimal", "BabyAI GoToRedBallNoDists", "Optimal-Fullobs", "Optimal", "BabyAI GoToRedBlueBall", "Optimal-Fullobs", "Optimal", "BabyAI GoToSeq", "Optimal-Fullobs", "Optimal", "BabyAI GoToSeqS5R2", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridor", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS3R1", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS3R2", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS3R3", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS4R3", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS5R3", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS6R3", "Optimal-Fullobs", "Optimal", "BabyAI MoveTwoAcrossS5N2", "Optimal-Fullobs", "Optimal", "BabyAI MoveTwoAcrossS8N9", "Optimal-Fullobs", "Optimal", "BabyAI OneRoomS12", "Optimal-Fullobs", "Optimal", "BabyAI OneRoomS16", "Optimal-Fullobs", "Optimal", "BabyAI OneRoomS20", "Optimal-Fullobs", "Optimal", "BabyAI OneRoomS8", "Optimal-Fullobs", "Optimal", "BabyAI Open", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoor", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorColor", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorDebug", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorLoc", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorsOrderN2", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorsOrderN2Debug", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorsOrderN4", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorsOrderN4Debug", "Optimal-Fullobs", "Optimal", "BabyAI OpenRedBlueDoors", "Optimal-Fullobs", "Optimal", "BabyAI OpenRedBlueDoorsDebug", "Optimal-Fullobs", "Optimal", "BabyAI OpenRedDoor", "Optimal-Fullobs", "Optimal", "BabyAI OpenTwoDoors", "Optimal-Fullobs", "Optimal", "BabyAI Pickup", "Optimal-Fullobs", "Optimal", "BabyAI PickupAbove", "Optimal-Fullobs", "Optimal", "BabyAI PickupLoc", "Optimal-Fullobs", "Optimal", "BabyAI PutNextLocal", "Optimal-Fullobs", "Optimal", "BabyAI PutNextLocalS5N3", "Optimal-Fullobs", "Optimal", "BabyAI PutNextLocalS6N4", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS4N1", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS5N1", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS5N2", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS6N3", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS7N4", "Optimal-Fullobs", "Optimal", "BabyAI Synth", "Optimal-Fullobs", "Optimal", "BabyAI SynthLoc", "Optimal-Fullobs", "Optimal", "BabyAI SynthSeq", "Optimal-Fullobs", "Optimal", "BabyAI UnblockPickup", "Optimal-Fullobs", "Optimal", "BabyAI UnlockLocal", "Optimal-Fullobs", "Optimal", "BabyAI UnlockLocalDist", "Optimal-Fullobs", "Optimal", "BabyAI UnlockPickup", "Optimal-Fullobs", "Optimal", "BabyAI UnlockPickupDist", "Optimal-Fullobs", "Optimal", "Minigrid", "Expert", "Ant", "MuJoCo", "<no title>", "Release Notes", "Dataset Creation", "Serializing a custom space", "Dataset Creation", "Collecting a subset of a dictionary space with StepDataCallback", "PointMaze D4RL dataset", "Tutorials", "Implicit Q-Learning with TorchRL", "Using Datasets", "Behavioral cloning with PyTorch", "Using Datasets"], "titleterms": {"0": 315, "1": [315, 320], "2": [315, 320], "3": [315, 320], "4": 315, "404": 0, "5": 315, "For": 322, "Not": 0, "The": [0, 322], "action": 13, "actionobjdoor": 55, "adroit": 322, "ant": [15, 312], "attribut": [3, 6, 7, 8, 9], "babyai": [55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307], "basic": 12, "behavior": 324, "blockedunlockpickup": 58, "bosslevel": 61, "bosslevelnounlock": 64, "buffer": 322, "build": [1, 322], "checkpoint": 12, "cli": 14, "clone": [22, 26, 38, 51, 324], "collect": [12, 319, 320], "combin": [10, 12, 14], "complet": 31, "content": [15, 25, 29, 30, 32, 37, 41, 42, 54, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 312, 313], "control": 320, "could": 0, "creat": [10, 11, 12, 320], "creation": [316, 318, 321], "custom": 317, "d": 320, "d4rl": [30, 320], "data": [12, 320], "data_collector": 3, "datacollector": 2, "dataset": [8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 316, 318, 320, 321, 323, 324, 325], "defin": 322, "delet": [10, 11, 14], "dens": [43, 45, 47, 49], "deriv": 320, "descript": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "detail": 14, "dictionari": 319, "directori": 13, "divers": [16, 18, 20], "document": 1, "door": 25, "download": [10, 11, 12, 14], "environ": [12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 322], "episod": 12, "episodebuff": 3, "episodedata": [6, 13], "episodemetadatacallback": 4, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "expert": [23, 27, 39, 52, 311], "filter": 12, "findobjs5": 67, "findobjs6": 70, "findobjs7": 73, "found": 0, "fourroom": [35, 36], "fullob": [56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308], "gener": 324, "get": 11, "goto": 76, "gotodoor": 79, "gotoloc": 82, "gotolocals5n2": 85, "gotolocals6n2": 88, "gotolocals6n3": 91, "gotolocals6n4": 94, "gotolocals7n4": 97, "gotolocals7n5": 100, "gotolocals8n2": 103, "gotolocals8n3": 106, "gotolocals8n4": 109, "gotolocals8n5": 112, "gotolocals8n6": 115, "gotolocals8n7": 118, "gotoobj": 121, "gotoobjdoor": 124, "gotoobjmaz": 127, "gotoobjmazeopen": 130, "gotoobjmazes4": 133, "gotoobjmazes4r2": 136, "gotoobjmazes5": 139, "gotoobjmazes6": 142, "gotoobjmazes7": 145, "gotoobjs4": 148, "gotoobjs6": 151, "gotoopen": 154, "gotoredbal": 157, "gotoredballgrei": 160, "gotoredballnodist": 163, "gotoredbluebal": 166, "gotoseq": 169, "gotoseqs5r2": 172, "hammer": 29, "headless": 322, "human": [24, 28, 40, 53], "i": 320, "implicit": 322, "import": 324, "instal": 12, "integr": 320, "keycorridor": 175, "keycorridors3r1": 178, "keycorridors3r2": 181, "keycorridors3r3": 184, "keycorridors4r3": 187, "keycorridors5r3": 190, "keycorridors6r3": 193, "kitchen": 32, "larg": [16, 17, 43, 44], "learn": 322, "list": [10, 11, 14], "load": [10, 12], "local": [11, 12, 14], "loss": 322, "maze": [15, 42], "medium": [18, 19, 45, 46], "metadata": [11, 13], "method": [2, 3, 4, 5, 7, 8], "minari": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 320], "minari_storag": 8, "minaridataset": 7, "minaristorag": 8, "minigrid": [37, 310], "mix": 33, "model": 322, "modifi": 320, "movetwoacrosss5n2": 196, "movetwoacrosss8n9": 199, "mujoco": 313, "namespac": [11, 12, 13], "normal": 10, "note": 315, "observ": 13, "onerooms12": 202, "onerooms16": 205, "onerooms20": 208, "onerooms8": 211, "open": [47, 48, 214], "opendoor": 217, "opendoorcolor": 220, "opendoordebug": 223, "opendoorloc": 226, "opendoorsordern2": 229, "opendoorsordern2debug": 232, "opendoorsordern4": 235, "opendoorsordern4debug": 238, "openredbluedoor": 241, "openredbluedoorsdebug": 244, "openreddoor": 247, "opentwodoor": 250, "optim": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 322], "p": 320, "page": 0, "partial": 34, "pen": [41, 322], "pickup": 253, "pickupabov": 256, "pickuploc": 259, "plai": [17, 19], "planner": 320, "point": 42, "pointmaz": 320, "polici": 324, "pre": 322, "proport": 320, "putnextloc": 262, "putnextlocals5n3": 265, "putnextlocals6n4": 268, "putnexts4n1": 271, "putnexts5n1": 274, "putnexts5n2": 277, "putnexts6n3": 280, "putnexts7n4": 283, "pytorch": 324, "q": 322, "random": 35, "recov": 12, "refer": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "releas": 315, "reloc": 54, "replai": 322, "request": 0, "requisit": 322, "result": 322, "sampl": 12, "save": 12, "score": 10, "serial": 317, "show": 14, "space": [13, 317, 319], "spec": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "split": [10, 12], "standard": 13, "stepdata": 9, "stepdatacallback": [5, 319, 320], "structur": 13, "subset": 319, "support": 13, "synth": 286, "synthloc": 289, "synthseq": 292, "term": 320, "torchrl": 322, "train": [322, 324], "tutori": 321, "umaz": [20, 21, 49, 50], "unblockpickup": 295, "unlockloc": 298, "unlocklocaldist": 301, "unlockpickup": 304, "unlockpickupdist": 307, "updat": 11, "upload": [11, 14], "us": [12, 321, 323, 325], "usag": 12, "v0": 315, "waypoint": 320}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"0.1.0": [[315, "release-0-1-0"]], "0.2.2": [[315, "release-0-2-2"]], "1. Proportional Term (P)": [[320, "proportional-term-p"]], "2. Derivative Term (D)": [[320, "derivative-term-d"]], "3. Integral Term (I)": [[320, "integral-term-i"]], "404 - Page Not Found": [[0, null]], "Ant": [[312, null]], "Ant Maze": [[15, null]], "Attributes": [[3, "attributes"], [6, "attributes"], [7, "attributes"], [8, "attributes"], [9, "attributes"]], "BabyAI ActionObjDoor": [[55, null]], "BabyAI BlockedUnlockPickup": [[58, null]], "BabyAI BossLevel": [[61, null]], "BabyAI BossLevelNoUnlock": [[64, null]], "BabyAI FindObjS5": [[67, null]], "BabyAI FindObjS6": [[70, null]], "BabyAI FindObjS7": [[73, null]], "BabyAI GoTo": [[76, null]], "BabyAI GoToDoor": [[79, null]], "BabyAI GoToLocal": [[82, null]], "BabyAI GoToLocalS5N2": [[85, null]], "BabyAI GoToLocalS6N2": [[88, null]], "BabyAI GoToLocalS6N3": [[91, null]], "BabyAI GoToLocalS6N4": [[94, null]], "BabyAI GoToLocalS7N4": [[97, null]], "BabyAI GoToLocalS7N5": [[100, null]], "BabyAI GoToLocalS8N2": [[103, null]], "BabyAI GoToLocalS8N3": [[106, null]], "BabyAI GoToLocalS8N4": [[109, null]], "BabyAI GoToLocalS8N5": [[112, null]], "BabyAI GoToLocalS8N6": [[115, null]], "BabyAI GoToLocalS8N7": [[118, null]], "BabyAI GoToObj": [[121, null]], "BabyAI GoToObjDoor": [[124, null]], "BabyAI GoToObjMaze": [[127, null]], "BabyAI GoToObjMazeOpen": [[130, null]], "BabyAI GoToObjMazeS4": [[133, null]], "BabyAI GoToObjMazeS4R2": [[136, null]], "BabyAI GoToObjMazeS5": [[139, null]], "BabyAI GoToObjMazeS6": [[142, null]], "BabyAI GoToObjMazeS7": [[145, null]], "BabyAI GoToObjS4": [[148, null]], "BabyAI GoToObjS6": [[151, null]], "BabyAI GoToOpen": [[154, null]], "BabyAI GoToRedBall": [[157, null]], "BabyAI GoToRedBallGrey": [[160, null]], "BabyAI GoToRedBallNoDists": [[163, null]], "BabyAI GoToRedBlueBall": [[166, null]], "BabyAI GoToSeq": [[169, null]], "BabyAI GoToSeqS5R2": [[172, null]], "BabyAI KeyCorridor": [[175, null]], "BabyAI KeyCorridorS3R1": [[178, null]], "BabyAI KeyCorridorS3R2": [[181, null]], "BabyAI KeyCorridorS3R3": [[184, null]], "BabyAI KeyCorridorS4R3": [[187, null]], "BabyAI KeyCorridorS5R3": [[190, null]], "BabyAI KeyCorridorS6R3": [[193, null]], "BabyAI MoveTwoAcrossS5N2": [[196, null]], "BabyAI MoveTwoAcrossS8N9": [[199, null]], "BabyAI OneRoomS12": [[202, null]], "BabyAI OneRoomS16": [[205, null]], "BabyAI OneRoomS20": [[208, null]], "BabyAI OneRoomS8": [[211, null]], "BabyAI Open": [[214, null]], "BabyAI OpenDoor": [[217, null]], "BabyAI OpenDoorColor": [[220, null]], "BabyAI OpenDoorDebug": [[223, null]], "BabyAI OpenDoorLoc": [[226, null]], "BabyAI OpenDoorsOrderN2": [[229, null]], "BabyAI OpenDoorsOrderN2Debug": [[232, null]], "BabyAI OpenDoorsOrderN4": [[235, null]], "BabyAI OpenDoorsOrderN4Debug": [[238, null]], "BabyAI OpenRedBlueDoors": [[241, null]], "BabyAI OpenRedBlueDoorsDebug": [[244, null]], "BabyAI OpenRedDoor": [[247, null]], "BabyAI OpenTwoDoors": [[250, null]], "BabyAI Pickup": [[253, null]], "BabyAI PickupAbove": [[256, null]], "BabyAI PickupLoc": [[259, null]], "BabyAI PutNextLocal": [[262, null]], "BabyAI PutNextLocalS5N3": [[265, null]], "BabyAI PutNextLocalS6N4": [[268, null]], "BabyAI PutNextS4N1": [[271, null]], "BabyAI PutNextS5N1": [[274, null]], "BabyAI PutNextS5N2": [[277, null]], "BabyAI PutNextS6N3": [[280, null]], "BabyAI PutNextS7N4": [[283, null]], "BabyAI Synth": [[286, null]], "BabyAI SynthLoc": [[289, null]], "BabyAI SynthSeq": [[292, null]], "BabyAI UnblockPickup": [[295, null]], "BabyAI UnlockLocal": [[298, null]], "BabyAI UnlockLocalDist": [[301, null]], "BabyAI UnlockPickup": [[304, null]], "BabyAI UnlockPickupDist": [[307, null]], "Basic Usage": [[12, null]], "Behavioral cloning with PyTorch": [[324, null], [324, "id1"]], "Build the Documentation": [[1, "build-the-documentation"]], "Building a replay buffer": [[322, "building-a-replay-buffer"]], "Checkpoint Minari Dataset": [[12, "checkpoint-minari-dataset"]], "Cloned": [[22, null], [26, null], [38, null], [51, null]], "Collect Data and Create Minari Dataset": [[320, "collect-data-and-create-minari-dataset"]], "Collecting Data": [[12, "collecting-data"]], "Collecting a subset of a dictionary space with StepDataCallback": [[319, null]], "Combine Minari Datasets": [[10, "combine-minari-datasets"], [12, "combine-minari-datasets"]], "Combine datasets": [[14, "combine-datasets"]], "Complete": [[31, null]], "Content": [[15, "content"], [25, "content"], [29, "content"], [30, "content"], [32, "content"], [37, "content"], [41, "content"], [42, "content"], [54, "content"], [55, "content"], [58, "content"], [61, "content"], [64, "content"], [67, "content"], [70, "content"], [73, "content"], [76, "content"], [79, "content"], [82, "content"], [85, "content"], [88, "content"], [91, "content"], [94, "content"], [97, "content"], [100, "content"], [103, "content"], [106, "content"], [109, "content"], [112, "content"], [115, "content"], [118, "content"], [121, "content"], [124, "content"], [127, "content"], [130, "content"], [133, "content"], [136, "content"], [139, "content"], [142, "content"], [145, "content"], [148, "content"], [151, "content"], [154, "content"], [157, "content"], [160, "content"], [163, "content"], [166, "content"], [169, "content"], [172, "content"], [175, "content"], [178, "content"], [181, "content"], [184, "content"], [187, "content"], [190, "content"], [193, "content"], [196, "content"], [199, "content"], [202, "content"], [205, "content"], [208, "content"], [211, "content"], [214, "content"], [217, "content"], [220, "content"], [223, "content"], [226, "content"], [229, "content"], [232, "content"], [235, "content"], [238, "content"], [241, "content"], [244, "content"], [247, "content"], [250, "content"], [253, "content"], [256, "content"], [259, "content"], [262, "content"], [265, "content"], [268, "content"], [271, "content"], [274, "content"], [277, "content"], [280, "content"], [283, "content"], [286, "content"], [289, "content"], [292, "content"], [295, "content"], [298, "content"], [301, "content"], [304, "content"], [307, "content"], [310, "content"], [312, "content"], [313, "content"]], "Create Minari Dataset": [[10, "create-minari-dataset"], [12, "create-minari-dataset"]], "Create Namespace": [[11, "create-namespace"]], "D4RL": [[30, null]], "DataCollector": [[2, null]], "Dataset Creation": [[316, null], [318, null], [321, "dataset-creation"]], "Dataset Metadata": [[13, "dataset-metadata"]], "Dataset Specs": [[16, "dataset-specs"], [17, "dataset-specs"], [18, "dataset-specs"], [19, "dataset-specs"], [20, "dataset-specs"], [21, "dataset-specs"], [22, "dataset-specs"], [23, "dataset-specs"], [24, "dataset-specs"], [26, "dataset-specs"], [27, "dataset-specs"], [28, "dataset-specs"], [31, "dataset-specs"], [33, "dataset-specs"], [34, "dataset-specs"], [35, "dataset-specs"], [36, "dataset-specs"], [38, "dataset-specs"], [39, "dataset-specs"], [40, "dataset-specs"], [43, "dataset-specs"], [44, "dataset-specs"], [45, "dataset-specs"], [46, "dataset-specs"], [47, "dataset-specs"], [48, "dataset-specs"], [49, "dataset-specs"], [50, "dataset-specs"], [51, "dataset-specs"], [52, "dataset-specs"], [53, "dataset-specs"], [56, "dataset-specs"], [57, "dataset-specs"], [59, "dataset-specs"], [60, "dataset-specs"], [62, "dataset-specs"], [63, "dataset-specs"], [65, "dataset-specs"], [66, "dataset-specs"], [68, "dataset-specs"], [69, "dataset-specs"], [71, "dataset-specs"], [72, "dataset-specs"], [74, "dataset-specs"], [75, "dataset-specs"], [77, "dataset-specs"], [78, "dataset-specs"], [80, "dataset-specs"], [81, "dataset-specs"], [83, "dataset-specs"], [84, "dataset-specs"], [86, "dataset-specs"], [87, "dataset-specs"], [89, "dataset-specs"], [90, "dataset-specs"], [92, "dataset-specs"], [93, "dataset-specs"], [95, "dataset-specs"], [96, "dataset-specs"], [98, "dataset-specs"], [99, "dataset-specs"], [101, "dataset-specs"], [102, "dataset-specs"], [104, "dataset-specs"], [105, "dataset-specs"], [107, "dataset-specs"], [108, "dataset-specs"], [110, "dataset-specs"], [111, "dataset-specs"], [113, "dataset-specs"], [114, "dataset-specs"], [116, "dataset-specs"], [117, "dataset-specs"], [119, "dataset-specs"], [120, "dataset-specs"], [122, "dataset-specs"], [123, "dataset-specs"], [125, "dataset-specs"], [126, "dataset-specs"], [128, "dataset-specs"], [129, "dataset-specs"], [131, "dataset-specs"], [132, "dataset-specs"], [134, "dataset-specs"], [135, "dataset-specs"], [137, "dataset-specs"], [138, "dataset-specs"], [140, "dataset-specs"], [141, "dataset-specs"], [143, "dataset-specs"], [144, "dataset-specs"], [146, "dataset-specs"], [147, "dataset-specs"], [149, "dataset-specs"], [150, "dataset-specs"], [152, "dataset-specs"], [153, "dataset-specs"], [155, "dataset-specs"], [156, "dataset-specs"], [158, "dataset-specs"], [159, "dataset-specs"], [161, "dataset-specs"], [162, "dataset-specs"], [164, "dataset-specs"], [165, "dataset-specs"], [167, "dataset-specs"], [168, "dataset-specs"], [170, "dataset-specs"], [171, "dataset-specs"], [173, "dataset-specs"], [174, "dataset-specs"], [176, "dataset-specs"], [177, "dataset-specs"], [179, "dataset-specs"], [180, "dataset-specs"], [182, "dataset-specs"], [183, "dataset-specs"], [185, "dataset-specs"], [186, "dataset-specs"], [188, "dataset-specs"], [189, "dataset-specs"], [191, "dataset-specs"], [192, "dataset-specs"], [194, "dataset-specs"], [195, "dataset-specs"], [197, "dataset-specs"], [198, "dataset-specs"], [200, "dataset-specs"], [201, "dataset-specs"], [203, "dataset-specs"], [204, "dataset-specs"], [206, "dataset-specs"], [207, "dataset-specs"], [209, "dataset-specs"], [210, "dataset-specs"], [212, "dataset-specs"], [213, "dataset-specs"], [215, "dataset-specs"], [216, "dataset-specs"], [218, "dataset-specs"], [219, "dataset-specs"], [221, "dataset-specs"], [222, "dataset-specs"], [224, "dataset-specs"], [225, "dataset-specs"], [227, "dataset-specs"], [228, "dataset-specs"], [230, "dataset-specs"], [231, "dataset-specs"], [233, "dataset-specs"], [234, "dataset-specs"], [236, "dataset-specs"], [237, "dataset-specs"], [239, "dataset-specs"], [240, "dataset-specs"], [242, "dataset-specs"], [243, "dataset-specs"], [245, "dataset-specs"], [246, "dataset-specs"], [248, "dataset-specs"], [249, "dataset-specs"], [251, "dataset-specs"], [252, "dataset-specs"], [254, "dataset-specs"], [255, "dataset-specs"], [257, "dataset-specs"], [258, "dataset-specs"], [260, "dataset-specs"], [261, "dataset-specs"], [263, "dataset-specs"], [264, "dataset-specs"], [266, "dataset-specs"], [267, "dataset-specs"], [269, "dataset-specs"], [270, "dataset-specs"], [272, "dataset-specs"], [273, "dataset-specs"], [275, "dataset-specs"], [276, "dataset-specs"], [278, "dataset-specs"], [279, "dataset-specs"], [281, "dataset-specs"], [282, "dataset-specs"], [284, "dataset-specs"], [285, "dataset-specs"], [287, "dataset-specs"], [288, "dataset-specs"], [290, "dataset-specs"], [291, "dataset-specs"], [293, "dataset-specs"], [294, "dataset-specs"], [296, "dataset-specs"], [297, "dataset-specs"], [299, "dataset-specs"], [300, "dataset-specs"], [302, "dataset-specs"], [303, "dataset-specs"], [305, "dataset-specs"], [306, "dataset-specs"], [308, "dataset-specs"], [309, "dataset-specs"], [311, "dataset-specs"]], "Dataset Standards": [[13, null]], "Dataset generation": [[324, "dataset-generation"]], "Defining the model": [[322, "defining-the-model"]], "Delete Minari Datasets": [[10, "delete-minari-datasets"]], "Delete Namespace": [[11, "delete-namespace"]], "Delete local datasets": [[14, "delete-local-datasets"]], "Description": [[16, "description"], [17, "description"], [18, "description"], [19, "description"], [20, "description"], [21, "description"], [22, "description"], [23, "description"], [24, "description"], [26, "description"], [27, "description"], [28, "description"], [31, "description"], [33, "description"], [34, "description"], [35, "description"], [36, "description"], [38, "description"], [39, "description"], [40, "description"], [43, "description"], [44, "description"], [45, "description"], [46, "description"], [47, "description"], [48, "description"], [49, "description"], [50, "description"], [51, "description"], [52, "description"], [53, "description"], [56, "description"], [57, "description"], [59, "description"], [60, "description"], [62, "description"], [63, "description"], [65, "description"], [66, "description"], [68, "description"], [69, "description"], [71, "description"], [72, "description"], [74, "description"], [75, "description"], [77, "description"], [78, "description"], [80, "description"], [81, "description"], [83, "description"], [84, "description"], [86, "description"], [87, "description"], [89, "description"], [90, "description"], [92, "description"], [93, "description"], [95, "description"], [96, "description"], [98, "description"], [99, "description"], [101, "description"], [102, "description"], [104, "description"], [105, "description"], [107, "description"], [108, "description"], [110, "description"], [111, "description"], [113, "description"], [114, "description"], [116, "description"], [117, "description"], [119, "description"], [120, "description"], [122, "description"], [123, "description"], [125, "description"], [126, "description"], [128, "description"], [129, "description"], [131, "description"], [132, "description"], [134, "description"], [135, "description"], [137, "description"], [138, "description"], [140, "description"], [141, "description"], [143, "description"], [144, "description"], [146, "description"], [147, "description"], [149, "description"], [150, "description"], [152, "description"], [153, "description"], [155, "description"], [156, "description"], [158, "description"], [159, "description"], [161, "description"], [162, "description"], [164, "description"], [165, "description"], [167, "description"], [168, "description"], [170, "description"], [171, "description"], [173, "description"], [174, "description"], [176, "description"], [177, "description"], [179, "description"], [180, "description"], [182, "description"], [183, "description"], [185, "description"], [186, "description"], [188, "description"], [189, "description"], [191, "description"], [192, "description"], [194, "description"], [195, "description"], [197, "description"], [198, "description"], [200, "description"], [201, "description"], [203, "description"], [204, "description"], [206, "description"], [207, "description"], [209, "description"], [210, "description"], [212, "description"], [213, "description"], [215, "description"], [216, "description"], [218, "description"], [219, "description"], [221, "description"], [222, "description"], [224, "description"], [225, "description"], [227, "description"], [228, "description"], [230, "description"], [231, "description"], [233, "description"], [234, "description"], [236, "description"], [237, "description"], [239, "description"], [240, "description"], [242, "description"], [243, "description"], [245, "description"], [246, "description"], [248, "description"], [249, "description"], [251, "description"], [252, "description"], [254, "description"], [255, "description"], [257, "description"], [258, "description"], [260, "description"], [261, "description"], [263, "description"], [264, "description"], [266, "description"], [267, "description"], [269, "description"], [270, "description"], [272, "description"], [273, "description"], [275, "description"], [276, "description"], [278, "description"], [279, "description"], [281, "description"], [282, "description"], [284, "description"], [285, "description"], [287, "description"], [288, "description"], [290, "description"], [291, "description"], [293, "description"], [294, "description"], [296, "description"], [297, "description"], [299, "description"], [300, "description"], [302, "description"], [303, "description"], [305, "description"], [306, "description"], [308, "description"], [309, "description"], [311, "description"]], "Door": [[25, null]], "Download Datasets": [[12, "download-datasets"]], "Download Minari Dataset": [[10, "download-minari-dataset"]], "Download Namespace Metadata": [[11, "download-namespace-metadata"]], "Download datasets": [[14, "download-datasets"]], "Environment Specs": [[16, "environment-specs"], [17, "environment-specs"], [18, "environment-specs"], [19, "environment-specs"], [20, "environment-specs"], [21, "environment-specs"], [22, "environment-specs"], [23, "environment-specs"], [24, "environment-specs"], [26, "environment-specs"], [27, "environment-specs"], [28, "environment-specs"], [31, "environment-specs"], [33, "environment-specs"], [34, "environment-specs"], [35, "environment-specs"], [36, "environment-specs"], [38, "environment-specs"], [39, "environment-specs"], [40, "environment-specs"], [43, "environment-specs"], [44, "environment-specs"], [45, "environment-specs"], [46, "environment-specs"], [47, "environment-specs"], [48, "environment-specs"], [49, "environment-specs"], [50, "environment-specs"], [51, "environment-specs"], [52, "environment-specs"], [53, "environment-specs"], [56, "environment-specs"], [57, "environment-specs"], [59, "environment-specs"], [60, "environment-specs"], [62, "environment-specs"], [63, "environment-specs"], [65, "environment-specs"], [66, "environment-specs"], [68, "environment-specs"], [69, "environment-specs"], [71, "environment-specs"], [72, "environment-specs"], [74, "environment-specs"], [75, "environment-specs"], [77, "environment-specs"], [78, "environment-specs"], [80, "environment-specs"], [81, "environment-specs"], [83, "environment-specs"], [84, "environment-specs"], [86, "environment-specs"], [87, "environment-specs"], [89, "environment-specs"], [90, "environment-specs"], [92, "environment-specs"], [93, "environment-specs"], [95, "environment-specs"], [96, "environment-specs"], [98, "environment-specs"], [99, "environment-specs"], [101, "environment-specs"], [102, "environment-specs"], [104, "environment-specs"], [105, "environment-specs"], [107, "environment-specs"], [108, "environment-specs"], [110, "environment-specs"], [111, "environment-specs"], [113, "environment-specs"], [114, "environment-specs"], [116, "environment-specs"], [117, "environment-specs"], [119, "environment-specs"], [120, "environment-specs"], [122, "environment-specs"], [123, "environment-specs"], [125, "environment-specs"], [126, "environment-specs"], [128, "environment-specs"], [129, "environment-specs"], [131, "environment-specs"], [132, "environment-specs"], [134, "environment-specs"], [135, "environment-specs"], [137, "environment-specs"], [138, "environment-specs"], [140, "environment-specs"], [141, "environment-specs"], [143, "environment-specs"], [144, "environment-specs"], [146, "environment-specs"], [147, "environment-specs"], [149, "environment-specs"], [150, "environment-specs"], [152, "environment-specs"], [153, "environment-specs"], [155, "environment-specs"], [156, "environment-specs"], [158, "environment-specs"], [159, "environment-specs"], [161, "environment-specs"], [162, "environment-specs"], [164, "environment-specs"], [165, "environment-specs"], [167, "environment-specs"], [168, "environment-specs"], [170, "environment-specs"], [171, "environment-specs"], [173, "environment-specs"], [174, "environment-specs"], [176, "environment-specs"], [177, "environment-specs"], [179, "environment-specs"], [180, "environment-specs"], [182, "environment-specs"], [183, "environment-specs"], [185, "environment-specs"], [186, "environment-specs"], [188, "environment-specs"], [189, "environment-specs"], [191, "environment-specs"], [192, "environment-specs"], [194, "environment-specs"], [195, "environment-specs"], [197, "environment-specs"], [198, "environment-specs"], [200, "environment-specs"], [201, "environment-specs"], [203, "environment-specs"], [204, "environment-specs"], [206, "environment-specs"], [207, "environment-specs"], [209, "environment-specs"], [210, "environment-specs"], [212, "environment-specs"], [213, "environment-specs"], [215, "environment-specs"], [216, "environment-specs"], [218, "environment-specs"], [219, "environment-specs"], [221, "environment-specs"], [222, "environment-specs"], [224, "environment-specs"], [225, "environment-specs"], [227, "environment-specs"], [228, "environment-specs"], [230, "environment-specs"], [231, "environment-specs"], [233, "environment-specs"], [234, "environment-specs"], [236, "environment-specs"], [237, "environment-specs"], [239, "environment-specs"], [240, "environment-specs"], [242, "environment-specs"], [243, "environment-specs"], [245, "environment-specs"], [246, "environment-specs"], [248, "environment-specs"], [249, "environment-specs"], [251, "environment-specs"], [252, "environment-specs"], [254, "environment-specs"], [255, "environment-specs"], [257, "environment-specs"], [258, "environment-specs"], [260, "environment-specs"], [261, "environment-specs"], [263, "environment-specs"], [264, "environment-specs"], [266, "environment-specs"], [267, "environment-specs"], [269, "environment-specs"], [270, "environment-specs"], [272, "environment-specs"], [273, "environment-specs"], [275, "environment-specs"], [276, "environment-specs"], [278, "environment-specs"], [279, "environment-specs"], [281, "environment-specs"], [282, "environment-specs"], [284, "environment-specs"], [285, "environment-specs"], [287, "environment-specs"], [288, "environment-specs"], [290, "environment-specs"], [291, "environment-specs"], [293, "environment-specs"], [294, "environment-specs"], [296, "environment-specs"], [297, "environment-specs"], [299, "environment-specs"], [300, "environment-specs"], [302, "environment-specs"], [303, "environment-specs"], [305, "environment-specs"], [306, "environment-specs"], [308, "environment-specs"], [309, "environment-specs"], [311, "environment-specs"]], "EpisodeBuffer": [[3, null]], "EpisodeData": [[6, null]], "EpisodeData Structure": [[13, "episodedata-structure"]], "EpisodeMetadataCallback": [[4, null]], "Evaluation Environment Specs": [[16, "evaluation-environment-specs"], [17, "evaluation-environment-specs"], [18, "evaluation-environment-specs"], [19, "evaluation-environment-specs"], [20, "evaluation-environment-specs"], [21, "evaluation-environment-specs"], [22, "evaluation-environment-specs"], [23, "evaluation-environment-specs"], [24, "evaluation-environment-specs"], [26, "evaluation-environment-specs"], [27, "evaluation-environment-specs"], [28, "evaluation-environment-specs"], [31, "evaluation-environment-specs"], [33, "evaluation-environment-specs"], [34, "evaluation-environment-specs"], [35, "evaluation-environment-specs"], [36, "evaluation-environment-specs"], [38, "evaluation-environment-specs"], [39, "evaluation-environment-specs"], [40, "evaluation-environment-specs"], [43, "evaluation-environment-specs"], [44, "evaluation-environment-specs"], [45, "evaluation-environment-specs"], [46, "evaluation-environment-specs"], [47, "evaluation-environment-specs"], [48, "evaluation-environment-specs"], [49, "evaluation-environment-specs"], [50, "evaluation-environment-specs"], [51, "evaluation-environment-specs"], [52, "evaluation-environment-specs"], [53, "evaluation-environment-specs"], [56, "evaluation-environment-specs"], [57, "evaluation-environment-specs"], [59, "evaluation-environment-specs"], [60, "evaluation-environment-specs"], [62, "evaluation-environment-specs"], [63, "evaluation-environment-specs"], [65, "evaluation-environment-specs"], [66, "evaluation-environment-specs"], [68, "evaluation-environment-specs"], [69, "evaluation-environment-specs"], [71, "evaluation-environment-specs"], [72, "evaluation-environment-specs"], [74, "evaluation-environment-specs"], [75, "evaluation-environment-specs"], [77, "evaluation-environment-specs"], [78, "evaluation-environment-specs"], [80, "evaluation-environment-specs"], [81, "evaluation-environment-specs"], [83, "evaluation-environment-specs"], [84, "evaluation-environment-specs"], [86, "evaluation-environment-specs"], [87, "evaluation-environment-specs"], [89, "evaluation-environment-specs"], [90, "evaluation-environment-specs"], [92, "evaluation-environment-specs"], [93, "evaluation-environment-specs"], [95, "evaluation-environment-specs"], [96, "evaluation-environment-specs"], [98, "evaluation-environment-specs"], [99, "evaluation-environment-specs"], [101, "evaluation-environment-specs"], [102, "evaluation-environment-specs"], [104, "evaluation-environment-specs"], [105, "evaluation-environment-specs"], [107, "evaluation-environment-specs"], [108, "evaluation-environment-specs"], [110, "evaluation-environment-specs"], [111, "evaluation-environment-specs"], [113, "evaluation-environment-specs"], [114, "evaluation-environment-specs"], [116, "evaluation-environment-specs"], [117, "evaluation-environment-specs"], [119, "evaluation-environment-specs"], [120, "evaluation-environment-specs"], [122, "evaluation-environment-specs"], [123, "evaluation-environment-specs"], [125, "evaluation-environment-specs"], [126, "evaluation-environment-specs"], [128, "evaluation-environment-specs"], [129, "evaluation-environment-specs"], [131, "evaluation-environment-specs"], [132, "evaluation-environment-specs"], [134, "evaluation-environment-specs"], [135, "evaluation-environment-specs"], [137, "evaluation-environment-specs"], [138, "evaluation-environment-specs"], [140, "evaluation-environment-specs"], [141, "evaluation-environment-specs"], [143, "evaluation-environment-specs"], [144, "evaluation-environment-specs"], [146, "evaluation-environment-specs"], [147, "evaluation-environment-specs"], [149, "evaluation-environment-specs"], [150, "evaluation-environment-specs"], [152, "evaluation-environment-specs"], [153, "evaluation-environment-specs"], [155, "evaluation-environment-specs"], [156, "evaluation-environment-specs"], [158, "evaluation-environment-specs"], [159, "evaluation-environment-specs"], [161, "evaluation-environment-specs"], [162, "evaluation-environment-specs"], [164, "evaluation-environment-specs"], [165, "evaluation-environment-specs"], [167, "evaluation-environment-specs"], [168, "evaluation-environment-specs"], [170, "evaluation-environment-specs"], [171, "evaluation-environment-specs"], [173, "evaluation-environment-specs"], [174, "evaluation-environment-specs"], [176, "evaluation-environment-specs"], [177, "evaluation-environment-specs"], [179, "evaluation-environment-specs"], [180, "evaluation-environment-specs"], [182, "evaluation-environment-specs"], [183, "evaluation-environment-specs"], [185, "evaluation-environment-specs"], [186, "evaluation-environment-specs"], [188, "evaluation-environment-specs"], [189, "evaluation-environment-specs"], [191, "evaluation-environment-specs"], [192, "evaluation-environment-specs"], [194, "evaluation-environment-specs"], [195, "evaluation-environment-specs"], [197, "evaluation-environment-specs"], [198, "evaluation-environment-specs"], [200, "evaluation-environment-specs"], [201, "evaluation-environment-specs"], [203, "evaluation-environment-specs"], [204, "evaluation-environment-specs"], [206, "evaluation-environment-specs"], [207, "evaluation-environment-specs"], [209, "evaluation-environment-specs"], [210, "evaluation-environment-specs"], [212, "evaluation-environment-specs"], [213, "evaluation-environment-specs"], [215, "evaluation-environment-specs"], [216, "evaluation-environment-specs"], [218, "evaluation-environment-specs"], [219, "evaluation-environment-specs"], [221, "evaluation-environment-specs"], [222, "evaluation-environment-specs"], [224, "evaluation-environment-specs"], [225, "evaluation-environment-specs"], [227, "evaluation-environment-specs"], [228, "evaluation-environment-specs"], [230, "evaluation-environment-specs"], [231, "evaluation-environment-specs"], [233, "evaluation-environment-specs"], [234, "evaluation-environment-specs"], [236, "evaluation-environment-specs"], [237, "evaluation-environment-specs"], [239, "evaluation-environment-specs"], [240, "evaluation-environment-specs"], [242, "evaluation-environment-specs"], [243, "evaluation-environment-specs"], [245, "evaluation-environment-specs"], [246, "evaluation-environment-specs"], [248, "evaluation-environment-specs"], [249, "evaluation-environment-specs"], [251, "evaluation-environment-specs"], [252, "evaluation-environment-specs"], [254, "evaluation-environment-specs"], [255, "evaluation-environment-specs"], [257, "evaluation-environment-specs"], [258, "evaluation-environment-specs"], [260, "evaluation-environment-specs"], [261, "evaluation-environment-specs"], [263, "evaluation-environment-specs"], [264, "evaluation-environment-specs"], [266, "evaluation-environment-specs"], [267, "evaluation-environment-specs"], [269, "evaluation-environment-specs"], [270, "evaluation-environment-specs"], [272, "evaluation-environment-specs"], [273, "evaluation-environment-specs"], [275, "evaluation-environment-specs"], [276, "evaluation-environment-specs"], [278, "evaluation-environment-specs"], [279, "evaluation-environment-specs"], [281, "evaluation-environment-specs"], [282, "evaluation-environment-specs"], [284, "evaluation-environment-specs"], [285, "evaluation-environment-specs"], [287, "evaluation-environment-specs"], [288, "evaluation-environment-specs"], [290, "evaluation-environment-specs"], [291, "evaluation-environment-specs"], [293, "evaluation-environment-specs"], [294, "evaluation-environment-specs"], [296, "evaluation-environment-specs"], [297, "evaluation-environment-specs"], [299, "evaluation-environment-specs"], [300, "evaluation-environment-specs"], [302, "evaluation-environment-specs"], [303, "evaluation-environment-specs"], [305, "evaluation-environment-specs"], [306, "evaluation-environment-specs"], [308, "evaluation-environment-specs"], [309, "evaluation-environment-specs"], [311, "evaluation-environment-specs"]], "Expert": [[23, null], [27, null], [39, null], [52, null], [311, null]], "Filter Episodes": [[12, "filter-episodes"]], "For headless environments": [[322, "for-headless-environments"]], "Fourrooms": [[36, null]], "Fourrooms-Random": [[35, null]], "Get Local Namespace Metadata": [[11, "get-local-namespace-metadata"]], "Hammer": [[29, null]], "Human": [[24, null], [28, null], [40, null], [53, null]], "Implicit Q-Learning": [[322, "implicit-q-learning"]], "Implicit Q-Learning with TorchRL": [[322, null]], "Imports": [[324, "imports"]], "Installation": [[12, "installation"]], "Kitchen": [[32, null]], "Large": [[44, null]], "Large-Dense": [[43, null]], "Large-Diverse": [[16, null]], "Large-Play": [[17, null]], "List Minari Datasets": [[10, "list-minari-datasets"]], "List Namespaces": [[11, "list-namespaces"]], "List datasets": [[14, "list-datasets"]], "Load Local Datasets": [[12, "load-local-datasets"]], "Load Minari Dataset": [[10, "load-minari-dataset"]], "Loss and optimizer": [[322, "loss-and-optimizer"]], "Medium": [[46, null]], "Medium-Dense": [[45, null]], "Medium-Diverse": [[18, null]], "Medium-Play": [[19, null]], "Methods": [[2, "methods"], [3, "methods"], [4, "methods"], [5, "methods"], [7, "methods"], [8, "methods"]], "Minari": [[10, null]], "Minari CLI": [[14, null]], "Minari Dataset Directory": [[13, "minari-dataset-directory"]], "Minari documentation": [[1, null]], "MinariDataset": [[7, null]], "MinariStorage": [[8, null]], "MiniGrid": [[37, null]], "Minigrid": [[310, null]], "Mixed": [[33, null]], "Modified StepDataCallback": [[320, "modified-stepdatacallback"]], "MuJoCo": [[313, null]], "Namespace": [[11, null]], "Namespace metadata": [[13, "namespace-metadata"]], "Normalize Score": [[10, "normalize-score"]], "Observation and Action Spaces": [[13, "observation-and-action-spaces"]], "Open": [[48, null]], "Open-Dense": [[47, null]], "Optimal": [[57, null], [60, null], [63, null], [66, null], [69, null], [72, null], [75, null], [78, null], [81, null], [84, null], [87, null], [90, null], [93, null], [96, null], [99, null], [102, null], [105, null], [108, null], [111, null], [114, null], [117, null], [120, null], [123, null], [126, null], [129, null], [132, null], [135, null], [138, null], [141, null], [144, null], [147, null], [150, null], [153, null], [156, null], [159, null], [162, null], [165, null], [168, null], [171, null], [174, null], [177, null], [180, null], [183, null], [186, null], [189, null], [192, null], [195, null], [198, null], [201, null], [204, null], [207, null], [210, null], [213, null], [216, null], [219, null], [222, null], [225, null], [228, null], [231, null], [234, null], [237, null], [240, null], [243, null], [246, null], [249, null], [252, null], [255, null], [258, null], [261, null], [264, null], [267, null], [270, null], [273, null], [276, null], [279, null], [282, null], [285, null], [288, null], [291, null], [294, null], [297, null], [300, null], [303, null], [306, null], [309, null]], "Optimal-Fullobs": [[56, null], [59, null], [62, null], [65, null], [68, null], [71, null], [74, null], [77, null], [80, null], [83, null], [86, null], [89, null], [92, null], [95, null], [98, null], [101, null], [104, null], [107, null], [110, null], [113, null], [116, null], [119, null], [122, null], [125, null], [128, null], [131, null], [134, null], [137, null], [140, null], [143, null], [146, null], [149, null], [152, null], [155, null], [158, null], [161, null], [164, null], [167, null], [170, null], [173, null], [176, null], [179, null], [182, null], [185, null], [188, null], [191, null], [194, null], [197, null], [200, null], [203, null], [206, null], [209, null], [212, null], [215, null], [218, null], [221, null], [224, null], [227, null], [230, null], [233, null], [236, null], [239, null], [242, null], [245, null], [248, null], [251, null], [254, null], [257, null], [260, null], [263, null], [266, null], [269, null], [272, null], [275, null], [278, null], [281, null], [284, null], [287, null], [290, null], [293, null], [296, null], [299, null], [302, null], [305, null], [308, null]], "Partial": [[34, null]], "Pen": [[41, null]], "Point Maze": [[42, null]], "PointMaze D4RL dataset": [[320, null]], "Policy training": [[324, "policy-training"]], "Pre-requisites": [[322, "pre-requisites"]], "Recover Environment": [[12, "recover-environment"]], "References": [[15, "references"], [25, "references"], [29, "references"], [30, "references"], [32, "references"], [37, "references"], [41, "references"], [42, "references"], [54, "references"], [320, "references"]], "Release Notes": [[315, null]], "Relocate": [[54, null]], "Results": [[322, "results"]], "Sampling Episodes": [[12, "sampling-episodes"]], "Save Dataset": [[12, "save-dataset"]], "Serializing a custom space": [[317, null]], "Show datasets details": [[14, "show-datasets-details"]], "Split Dataset": [[12, "split-dataset"]], "Split Minari Dataset": [[10, "split-minari-dataset"]], "StepData": [[9, null]], "StepDataCallback": [[5, null]], "Supported Spaces": [[13, "supported-spaces"]], "The Adroit Pen environment": [[322, "the-adroit-pen-environment"]], "The requested page could not be found.": [[0, "the-requested-page-could-not-be-found"]], "Training": [[322, "training"]], "Tutorials": [[321, null]], "Umaze": [[21, null], [50, null]], "Umaze-Dense": [[49, null]], "Umaze-Diverse": [[20, null]], "Update Namespace": [[11, "update-namespace"]], "Upload Namespace": [[11, "upload-namespace"]], "Upload datasets": [[14, "upload-datasets"]], "Using Datasets": [[321, "using-datasets"], [323, null], [325, null]], "Using Minari Datasets": [[12, "using-minari-datasets"]], "Using Namespaces": [[12, "using-namespaces"]], "WayPoint Planner": [[320, "waypoint-planner"]], "Waypoint Controller": [[320, "waypoint-controller"]], "minari.DataCollector": [[2, "minari-datacollector"]], "minari.EpisodeData": [[6, "minari-episodedata"]], "minari.EpisodeMetadataCallback": [[4, "minari-episodemetadatacallback"]], "minari.MinariDataset": [[7, "minari-minaridataset"]], "minari.StepData": [[9, "minari-stepdata"]], "minari.StepDataCallback": [[5, "minari-stepdatacallback"]], "minari.data_collector.EpisodeBuffer": [[3, "minari-data-collector-episodebuffer"]], "minari.dataset.minari_storage.MinariStorage": [[8, "minari-dataset-minari-storage-minaristorage"]], "v0.3.0": [[315, "release-v0-3-0"]], "v0.3.1": [[315, "release-v0-3-1"]], "v0.4.0": [[315, "release-v0-4-0"]], "v0.4.1": [[315, "release-v0-4-1"]], "v0.4.2": [[315, "release-v0-4-2"]], "v0.4.3": [[315, "release-v0-4-3"]], "v0.5.0": [[315, "release-v0-5-0"]], "v0.5.1": [[315, "release-v0-5-1"]], "v0.5.2": [[315, "release-v0-5-2"]]}, "docnames": ["404", "README", "api/data_collector", "api/data_collector/episode_buffer", "api/data_collector/episode_metadata_callback", "api/data_collector/step_data_callback", "api/minari_dataset/episode_data", "api/minari_dataset/minari_dataset", "api/minari_dataset/minari_storage", "api/minari_dataset/step_data", "api/minari_functions", "api/namespace/namespace", "content/basic_usage", "content/dataset_standards", "content/minari_cli", "datasets/D4RL/antmaze/index", "datasets/D4RL/antmaze/large-diverse-v1", "datasets/D4RL/antmaze/large-play-v1", "datasets/D4RL/antmaze/medium-diverse-v1", "datasets/D4RL/antmaze/medium-play-v1", "datasets/D4RL/antmaze/umaze-diverse-v1", "datasets/D4RL/antmaze/umaze-v1", "datasets/D4RL/door/cloned-v2", "datasets/D4RL/door/expert-v2", "datasets/D4RL/door/human-v2", "datasets/D4RL/door/index", "datasets/D4RL/hammer/cloned-v2", "datasets/D4RL/hammer/expert-v2", "datasets/D4RL/hammer/human-v2", "datasets/D4RL/hammer/index", "datasets/D4RL/index", "datasets/D4RL/kitchen/complete-v2", "datasets/D4RL/kitchen/index", "datasets/D4RL/kitchen/mixed-v2", "datasets/D4RL/kitchen/partial-v2", "datasets/D4RL/minigrid/fourrooms-random-v0", "datasets/D4RL/minigrid/fourrooms-v0", "datasets/D4RL/minigrid/index", "datasets/D4RL/pen/cloned-v2", "datasets/D4RL/pen/expert-v2", "datasets/D4RL/pen/human-v2", "datasets/D4RL/pen/index", "datasets/D4RL/pointmaze/index", "datasets/D4RL/pointmaze/large-dense-v2", "datasets/D4RL/pointmaze/large-v2", "datasets/D4RL/pointmaze/medium-dense-v2", "datasets/D4RL/pointmaze/medium-v2", "datasets/D4RL/pointmaze/open-dense-v2", "datasets/D4RL/pointmaze/open-v2", "datasets/D4RL/pointmaze/umaze-dense-v2", "datasets/D4RL/pointmaze/umaze-v2", "datasets/D4RL/relocate/cloned-v2", "datasets/D4RL/relocate/expert-v2", "datasets/D4RL/relocate/human-v2", "datasets/D4RL/relocate/index", "datasets/minigrid/BabyAI-ActionObjDoor/index", "datasets/minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-ActionObjDoor/optimal-v0", "datasets/minigrid/BabyAI-BlockedUnlockPickup/index", "datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0", "datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-v0", "datasets/minigrid/BabyAI-BossLevel/index", "datasets/minigrid/BabyAI-BossLevel/optimal-fullobs-v0", "datasets/minigrid/BabyAI-BossLevel/optimal-v0", "datasets/minigrid/BabyAI-BossLevelNoUnlock/index", "datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0", "datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-v0", "datasets/minigrid/BabyAI-FindObjS5/index", "datasets/minigrid/BabyAI-FindObjS5/optimal-fullobs-v0", "datasets/minigrid/BabyAI-FindObjS5/optimal-v0", "datasets/minigrid/BabyAI-FindObjS6/index", "datasets/minigrid/BabyAI-FindObjS6/optimal-fullobs-v0", "datasets/minigrid/BabyAI-FindObjS6/optimal-v0", "datasets/minigrid/BabyAI-FindObjS7/index", "datasets/minigrid/BabyAI-FindObjS7/optimal-fullobs-v0", "datasets/minigrid/BabyAI-FindObjS7/optimal-v0", "datasets/minigrid/BabyAI-GoTo/index", "datasets/minigrid/BabyAI-GoTo/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoTo/optimal-v0", "datasets/minigrid/BabyAI-GoToDoor/index", "datasets/minigrid/BabyAI-GoToDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToDoor/optimal-v0", "datasets/minigrid/BabyAI-GoToLocal/index", "datasets/minigrid/BabyAI-GoToLocal/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocal/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS5N2/index", "datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS6N2/index", "datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS6N3/index", "datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS6N4/index", "datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS7N4/index", "datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS7N5/index", "datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N2/index", "datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N3/index", "datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N4/index", "datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N5/index", "datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N6/index", "datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-v0", "datasets/minigrid/BabyAI-GoToLocalS8N7/index", "datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-v0", "datasets/minigrid/BabyAI-GoToObj/index", "datasets/minigrid/BabyAI-GoToObj/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObj/optimal-v0", "datasets/minigrid/BabyAI-GoToObjDoor/index", "datasets/minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjDoor/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMaze/index", "datasets/minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMaze/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeOpen/index", "datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS4/index", "datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/index", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS5/index", "datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS6/index", "datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-v0", "datasets/minigrid/BabyAI-GoToObjMazeS7/index", "datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-v0", "datasets/minigrid/BabyAI-GoToObjS4/index", "datasets/minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjS4/optimal-v0", "datasets/minigrid/BabyAI-GoToObjS6/index", "datasets/minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToObjS6/optimal-v0", "datasets/minigrid/BabyAI-GoToOpen/index", "datasets/minigrid/BabyAI-GoToOpen/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToOpen/optimal-v0", "datasets/minigrid/BabyAI-GoToRedBall/index", "datasets/minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToRedBall/optimal-v0", "datasets/minigrid/BabyAI-GoToRedBallGrey/index", "datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-v0", "datasets/minigrid/BabyAI-GoToRedBallNoDists/index", "datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-v0", "datasets/minigrid/BabyAI-GoToRedBlueBall/index", "datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-v0", "datasets/minigrid/BabyAI-GoToSeq/index", "datasets/minigrid/BabyAI-GoToSeq/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToSeq/optimal-v0", "datasets/minigrid/BabyAI-GoToSeqS5R2/index", "datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridor/index", "datasets/minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridor/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R1/index", "datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R2/index", "datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R3/index", "datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS4R3/index", "datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS5R3/index", "datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-v0", "datasets/minigrid/BabyAI-KeyCorridorS6R3/index", "datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-v0", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/index", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/index", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0", "datasets/minigrid/BabyAI-OneRoomS12/index", "datasets/minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OneRoomS12/optimal-v0", "datasets/minigrid/BabyAI-OneRoomS16/index", "datasets/minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OneRoomS16/optimal-v0", "datasets/minigrid/BabyAI-OneRoomS20/index", "datasets/minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OneRoomS20/optimal-v0", "datasets/minigrid/BabyAI-OneRoomS8/index", "datasets/minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OneRoomS8/optimal-v0", "datasets/minigrid/BabyAI-Open/index", "datasets/minigrid/BabyAI-Open/optimal-fullobs-v0", "datasets/minigrid/BabyAI-Open/optimal-v0", "datasets/minigrid/BabyAI-OpenDoor/index", "datasets/minigrid/BabyAI-OpenDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoor/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorColor/index", "datasets/minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorColor/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorDebug/index", "datasets/minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorDebug/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorLoc/index", "datasets/minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorLoc/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/index", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/index", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/index", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/index", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0", "datasets/minigrid/BabyAI-OpenRedBlueDoors/index", "datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-v0", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/index", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0", "datasets/minigrid/BabyAI-OpenRedDoor/index", "datasets/minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenRedDoor/optimal-v0", "datasets/minigrid/BabyAI-OpenTwoDoors/index", "datasets/minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0", "datasets/minigrid/BabyAI-OpenTwoDoors/optimal-v0", "datasets/minigrid/BabyAI-Pickup/index", "datasets/minigrid/BabyAI-Pickup/optimal-fullobs-v0", "datasets/minigrid/BabyAI-Pickup/optimal-v0", "datasets/minigrid/BabyAI-PickupAbove/index", "datasets/minigrid/BabyAI-PickupAbove/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PickupAbove/optimal-v0", "datasets/minigrid/BabyAI-PickupLoc/index", "datasets/minigrid/BabyAI-PickupLoc/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PickupLoc/optimal-v0", "datasets/minigrid/BabyAI-PutNextLocal/index", "datasets/minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextLocal/optimal-v0", "datasets/minigrid/BabyAI-PutNextLocalS5N3/index", "datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-v0", "datasets/minigrid/BabyAI-PutNextLocalS6N4/index", "datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-v0", "datasets/minigrid/BabyAI-PutNextS4N1/index", "datasets/minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS4N1/optimal-v0", "datasets/minigrid/BabyAI-PutNextS5N1/index", "datasets/minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS5N1/optimal-v0", "datasets/minigrid/BabyAI-PutNextS5N2/index", "datasets/minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS5N2/optimal-v0", "datasets/minigrid/BabyAI-PutNextS6N3/index", "datasets/minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS6N3/optimal-v0", "datasets/minigrid/BabyAI-PutNextS7N4/index", "datasets/minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0", "datasets/minigrid/BabyAI-PutNextS7N4/optimal-v0", "datasets/minigrid/BabyAI-Synth/index", "datasets/minigrid/BabyAI-Synth/optimal-fullobs-v0", "datasets/minigrid/BabyAI-Synth/optimal-v0", "datasets/minigrid/BabyAI-SynthLoc/index", "datasets/minigrid/BabyAI-SynthLoc/optimal-fullobs-v0", "datasets/minigrid/BabyAI-SynthLoc/optimal-v0", "datasets/minigrid/BabyAI-SynthSeq/index", "datasets/minigrid/BabyAI-SynthSeq/optimal-fullobs-v0", "datasets/minigrid/BabyAI-SynthSeq/optimal-v0", "datasets/minigrid/BabyAI-UnblockPickup/index", "datasets/minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnblockPickup/optimal-v0", "datasets/minigrid/BabyAI-UnlockLocal/index", "datasets/minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnlockLocal/optimal-v0", "datasets/minigrid/BabyAI-UnlockLocalDist/index", "datasets/minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnlockLocalDist/optimal-v0", "datasets/minigrid/BabyAI-UnlockPickup/index", "datasets/minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnlockPickup/optimal-v0", "datasets/minigrid/BabyAI-UnlockPickupDist/index", "datasets/minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0", "datasets/minigrid/BabyAI-UnlockPickupDist/optimal-v0", "datasets/minigrid/index", "datasets/mujoco/ant/expert-v0", "datasets/mujoco/ant/index", "datasets/mujoco/index", "index", "release_notes/index", "tutorials/dataset_creation/README", "tutorials/dataset_creation/custom_space_serialization", "tutorials/dataset_creation/index", "tutorials/dataset_creation/observation_space_subseting", "tutorials/dataset_creation/point_maze_dataset", "tutorials/index", "tutorials/using_datasets/IQL_torchrl", "tutorials/using_datasets/README", "tutorials/using_datasets/behavioral_cloning", "tutorials/using_datasets/index"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["404.md", "README.md", "api/data_collector.md", "api/data_collector/episode_buffer.md", "api/data_collector/episode_metadata_callback.md", "api/data_collector/step_data_callback.md", "api/minari_dataset/episode_data.md", "api/minari_dataset/minari_dataset.md", "api/minari_dataset/minari_storage.md", "api/minari_dataset/step_data.md", "api/minari_functions.md", "api/namespace/namespace.md", "content/basic_usage.md", "content/dataset_standards.md", "content/minari_cli.md", "datasets/D4RL/antmaze/index.md", "datasets/D4RL/antmaze/large-diverse-v1.md", "datasets/D4RL/antmaze/large-play-v1.md", "datasets/D4RL/antmaze/medium-diverse-v1.md", "datasets/D4RL/antmaze/medium-play-v1.md", "datasets/D4RL/antmaze/umaze-diverse-v1.md", "datasets/D4RL/antmaze/umaze-v1.md", "datasets/D4RL/door/cloned-v2.md", "datasets/D4RL/door/expert-v2.md", "datasets/D4RL/door/human-v2.md", "datasets/D4RL/door/index.md", "datasets/D4RL/hammer/cloned-v2.md", "datasets/D4RL/hammer/expert-v2.md", "datasets/D4RL/hammer/human-v2.md", "datasets/D4RL/hammer/index.md", "datasets/D4RL/index.md", "datasets/D4RL/kitchen/complete-v2.md", "datasets/D4RL/kitchen/index.md", "datasets/D4RL/kitchen/mixed-v2.md", "datasets/D4RL/kitchen/partial-v2.md", "datasets/D4RL/minigrid/fourrooms-random-v0.md", "datasets/D4RL/minigrid/fourrooms-v0.md", "datasets/D4RL/minigrid/index.md", "datasets/D4RL/pen/cloned-v2.md", "datasets/D4RL/pen/expert-v2.md", "datasets/D4RL/pen/human-v2.md", "datasets/D4RL/pen/index.md", "datasets/D4RL/pointmaze/index.md", "datasets/D4RL/pointmaze/large-dense-v2.md", "datasets/D4RL/pointmaze/large-v2.md", "datasets/D4RL/pointmaze/medium-dense-v2.md", "datasets/D4RL/pointmaze/medium-v2.md", "datasets/D4RL/pointmaze/open-dense-v2.md", "datasets/D4RL/pointmaze/open-v2.md", "datasets/D4RL/pointmaze/umaze-dense-v2.md", "datasets/D4RL/pointmaze/umaze-v2.md", "datasets/D4RL/relocate/cloned-v2.md", "datasets/D4RL/relocate/expert-v2.md", "datasets/D4RL/relocate/human-v2.md", "datasets/D4RL/relocate/index.md", "datasets/minigrid/BabyAI-ActionObjDoor/index.md", "datasets/minigrid/BabyAI-ActionObjDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-ActionObjDoor/optimal-v0.md", "datasets/minigrid/BabyAI-BlockedUnlockPickup/index.md", "datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-BlockedUnlockPickup/optimal-v0.md", "datasets/minigrid/BabyAI-BossLevel/index.md", "datasets/minigrid/BabyAI-BossLevel/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-BossLevel/optimal-v0.md", "datasets/minigrid/BabyAI-BossLevelNoUnlock/index.md", "datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-BossLevelNoUnlock/optimal-v0.md", "datasets/minigrid/BabyAI-FindObjS5/index.md", "datasets/minigrid/BabyAI-FindObjS5/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-FindObjS5/optimal-v0.md", "datasets/minigrid/BabyAI-FindObjS6/index.md", "datasets/minigrid/BabyAI-FindObjS6/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-FindObjS6/optimal-v0.md", "datasets/minigrid/BabyAI-FindObjS7/index.md", "datasets/minigrid/BabyAI-FindObjS7/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-FindObjS7/optimal-v0.md", "datasets/minigrid/BabyAI-GoTo/index.md", "datasets/minigrid/BabyAI-GoTo/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoTo/optimal-v0.md", "datasets/minigrid/BabyAI-GoToDoor/index.md", "datasets/minigrid/BabyAI-GoToDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToDoor/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocal/index.md", "datasets/minigrid/BabyAI-GoToLocal/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocal/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS5N2/index.md", "datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS5N2/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N2/index.md", "datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N2/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N3/index.md", "datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N3/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N4/index.md", "datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS6N4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS7N4/index.md", "datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS7N4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS7N5/index.md", "datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS7N5/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N2/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N2/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N3/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N3/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N4/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N5/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N5/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N6/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N6/optimal-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N7/index.md", "datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToLocalS8N7/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObj/index.md", "datasets/minigrid/BabyAI-GoToObj/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObj/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjDoor/index.md", "datasets/minigrid/BabyAI-GoToObjDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjDoor/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMaze/index.md", "datasets/minigrid/BabyAI-GoToObjMaze/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMaze/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeOpen/index.md", "datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeOpen/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS4/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS4R2/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS5/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS5/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS6/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS6/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS7/index.md", "datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjMazeS7/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjS4/index.md", "datasets/minigrid/BabyAI-GoToObjS4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjS4/optimal-v0.md", "datasets/minigrid/BabyAI-GoToObjS6/index.md", "datasets/minigrid/BabyAI-GoToObjS6/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToObjS6/optimal-v0.md", "datasets/minigrid/BabyAI-GoToOpen/index.md", "datasets/minigrid/BabyAI-GoToOpen/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToOpen/optimal-v0.md", "datasets/minigrid/BabyAI-GoToRedBall/index.md", "datasets/minigrid/BabyAI-GoToRedBall/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToRedBall/optimal-v0.md", "datasets/minigrid/BabyAI-GoToRedBallGrey/index.md", "datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToRedBallGrey/optimal-v0.md", "datasets/minigrid/BabyAI-GoToRedBallNoDists/index.md", "datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToRedBallNoDists/optimal-v0.md", "datasets/minigrid/BabyAI-GoToRedBlueBall/index.md", "datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToRedBlueBall/optimal-v0.md", "datasets/minigrid/BabyAI-GoToSeq/index.md", "datasets/minigrid/BabyAI-GoToSeq/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToSeq/optimal-v0.md", "datasets/minigrid/BabyAI-GoToSeqS5R2/index.md", "datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-GoToSeqS5R2/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridor/index.md", "datasets/minigrid/BabyAI-KeyCorridor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridor/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R1/index.md", "datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R1/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R2/index.md", "datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R2/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R3/index.md", "datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS3R3/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS4R3/index.md", "datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS4R3/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS5R3/index.md", "datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS5R3/optimal-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS6R3/index.md", "datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-KeyCorridorS6R3/optimal-v0.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/index.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS5N2/optimal-v0.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/index.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-MoveTwoAcrossS8N9/optimal-v0.md", "datasets/minigrid/BabyAI-OneRoomS12/index.md", "datasets/minigrid/BabyAI-OneRoomS12/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OneRoomS12/optimal-v0.md", "datasets/minigrid/BabyAI-OneRoomS16/index.md", "datasets/minigrid/BabyAI-OneRoomS16/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OneRoomS16/optimal-v0.md", "datasets/minigrid/BabyAI-OneRoomS20/index.md", "datasets/minigrid/BabyAI-OneRoomS20/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OneRoomS20/optimal-v0.md", "datasets/minigrid/BabyAI-OneRoomS8/index.md", "datasets/minigrid/BabyAI-OneRoomS8/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OneRoomS8/optimal-v0.md", "datasets/minigrid/BabyAI-Open/index.md", "datasets/minigrid/BabyAI-Open/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-Open/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoor/index.md", "datasets/minigrid/BabyAI-OpenDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoor/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorColor/index.md", "datasets/minigrid/BabyAI-OpenDoorColor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorColor/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorDebug/index.md", "datasets/minigrid/BabyAI-OpenDoorDebug/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorDebug/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorLoc/index.md", "datasets/minigrid/BabyAI-OpenDoorLoc/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorLoc/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/index.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/index.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN2Debug/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/index.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4/optimal-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/index.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenDoorsOrderN4Debug/optimal-v0.md", "datasets/minigrid/BabyAI-OpenRedBlueDoors/index.md", "datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenRedBlueDoors/optimal-v0.md", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/index.md", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenRedBlueDoorsDebug/optimal-v0.md", "datasets/minigrid/BabyAI-OpenRedDoor/index.md", "datasets/minigrid/BabyAI-OpenRedDoor/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenRedDoor/optimal-v0.md", "datasets/minigrid/BabyAI-OpenTwoDoors/index.md", "datasets/minigrid/BabyAI-OpenTwoDoors/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-OpenTwoDoors/optimal-v0.md", "datasets/minigrid/BabyAI-Pickup/index.md", "datasets/minigrid/BabyAI-Pickup/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-Pickup/optimal-v0.md", "datasets/minigrid/BabyAI-PickupAbove/index.md", "datasets/minigrid/BabyAI-PickupAbove/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PickupAbove/optimal-v0.md", "datasets/minigrid/BabyAI-PickupLoc/index.md", "datasets/minigrid/BabyAI-PickupLoc/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PickupLoc/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextLocal/index.md", "datasets/minigrid/BabyAI-PutNextLocal/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextLocal/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextLocalS5N3/index.md", "datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextLocalS5N3/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextLocalS6N4/index.md", "datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextLocalS6N4/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS4N1/index.md", "datasets/minigrid/BabyAI-PutNextS4N1/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS4N1/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS5N1/index.md", "datasets/minigrid/BabyAI-PutNextS5N1/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS5N1/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS5N2/index.md", "datasets/minigrid/BabyAI-PutNextS5N2/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS5N2/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS6N3/index.md", "datasets/minigrid/BabyAI-PutNextS6N3/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS6N3/optimal-v0.md", "datasets/minigrid/BabyAI-PutNextS7N4/index.md", "datasets/minigrid/BabyAI-PutNextS7N4/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-PutNextS7N4/optimal-v0.md", "datasets/minigrid/BabyAI-Synth/index.md", "datasets/minigrid/BabyAI-Synth/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-Synth/optimal-v0.md", "datasets/minigrid/BabyAI-SynthLoc/index.md", "datasets/minigrid/BabyAI-SynthLoc/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-SynthLoc/optimal-v0.md", "datasets/minigrid/BabyAI-SynthSeq/index.md", "datasets/minigrid/BabyAI-SynthSeq/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-SynthSeq/optimal-v0.md", "datasets/minigrid/BabyAI-UnblockPickup/index.md", "datasets/minigrid/BabyAI-UnblockPickup/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnblockPickup/optimal-v0.md", "datasets/minigrid/BabyAI-UnlockLocal/index.md", "datasets/minigrid/BabyAI-UnlockLocal/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnlockLocal/optimal-v0.md", "datasets/minigrid/BabyAI-UnlockLocalDist/index.md", "datasets/minigrid/BabyAI-UnlockLocalDist/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnlockLocalDist/optimal-v0.md", "datasets/minigrid/BabyAI-UnlockPickup/index.md", "datasets/minigrid/BabyAI-UnlockPickup/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnlockPickup/optimal-v0.md", "datasets/minigrid/BabyAI-UnlockPickupDist/index.md", "datasets/minigrid/BabyAI-UnlockPickupDist/optimal-fullobs-v0.md", "datasets/minigrid/BabyAI-UnlockPickupDist/optimal-v0.md", "datasets/minigrid/index.md", "datasets/mujoco/ant/expert-v0.md", "datasets/mujoco/ant/index.md", "datasets/mujoco/index.md", "index.md", "release_notes/index.md", "tutorials/dataset_creation/README.rst", "tutorials/dataset_creation/custom_space_serialization.rst", "tutorials/dataset_creation/index.rst", "tutorials/dataset_creation/observation_space_subseting.rst", "tutorials/dataset_creation/point_maze_dataset.rst", "tutorials/index.rst", "tutorials/using_datasets/IQL_torchrl.rst", "tutorials/using_datasets/README.rst", "tutorials/using_datasets/behavioral_cloning.rst", "tutorials/using_datasets/index.rst"], "indexentries": {"__call__() (in module minari.episodemetadatacallback)": [[4, "minari.EpisodeMetadataCallback.__call__", false]], "__call__() (in module minari.stepdatacallback)": [[5, "minari.StepDataCallback.__call__", false]], "__len__() (in module minari.data_collector.episodebuffer)": [[3, "minari.data_collector.EpisodeBuffer.__len__", false]], "action (minari.stepdata attribute)": [[9, "minari.StepData.action", false]], "action_space (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.action_space", false]], "actions (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.actions", false]], "actions (minari.episodedata attribute)": [[6, "minari.EpisodeData.actions", false]], "add_step_data() (in module minari.data_collector.episodebuffer)": [[3, "minari.data_collector.EpisodeBuffer.add_step_data", false]], "add_to_dataset() (in module minari.datacollector)": [[2, "minari.DataCollector.add_to_dataset", false]], "apply() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.apply", false]], "close() (in module minari.datacollector)": [[2, "minari.DataCollector.close", false]], "combine_datasets() (in module minari)": [[10, "minari.combine_datasets", false]], "create_dataset() (in module minari.datacollector)": [[2, "minari.DataCollector.create_dataset", false]], "create_dataset_from_buffers() (in module minari)": [[10, "minari.create_dataset_from_buffers", false]], "create_namespace() (in module minari.namespace)": [[11, "minari.namespace.create_namespace", false]], "data_path (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.data_path", false]], "datacollector (class in minari)": [[2, "minari.DataCollector", false]], "delete_dataset() (in module minari)": [[10, "minari.delete_dataset", false]], "delete_namespace() (in module minari.namespace)": [[11, "minari.namespace.delete_namespace", false]], "download_dataset() (in module minari)": [[10, "minari.download_dataset", false]], "download_namespace_metadata() (in module minari.namespace)": [[11, "minari.namespace.download_namespace_metadata", false]], "episode_indices (minari.minaridataset attribute)": [[7, "minari.MinariDataset.episode_indices", false]], "episodebuffer (class in minari.data_collector)": [[3, "minari.data_collector.EpisodeBuffer", false]], "episodedata (class in minari)": [[6, "minari.EpisodeData", false]], "episodemetadatacallback (class in minari)": [[4, "minari.EpisodeMetadataCallback", false]], "filter_episodes() (in module minari.minaridataset)": [[7, "minari.MinariDataset.filter_episodes", false]], "get_episode_metadata() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.get_episode_metadata", false]], "get_episodes() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.get_episodes", false]], "get_namespace_metadata() (in module minari.namespace)": [[11, "minari.namespace.get_namespace_metadata", false]], "get_normalized_score() (in module minari)": [[10, "minari.get_normalized_score", false]], "get_size() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.get_size", false]], "id (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.id", false]], "id (minari.episodedata attribute)": [[6, "minari.EpisodeData.id", false]], "info (minari.stepdata attribute)": [[9, "minari.StepData.info", false]], "infos (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.infos", false]], "infos (minari.episodedata attribute)": [[6, "minari.EpisodeData.infos", false]], "iterate_episodes() (in module minari.minaridataset)": [[7, "minari.MinariDataset.iterate_episodes", false]], "list_local_datasets() (in module minari)": [[10, "minari.list_local_datasets", false]], "list_local_namespaces() (in module minari.namespace)": [[11, "minari.namespace.list_local_namespaces", false]], "list_remote_datasets() (in module minari)": [[10, "minari.list_remote_datasets", false]], "list_remote_namespaces() (in module minari.namespace)": [[11, "minari.namespace.list_remote_namespaces", false]], "load_dataset() (in module minari)": [[10, "minari.load_dataset", false]], "metadata (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.metadata", false]], "minaridataset (class in minari)": [[7, "minari.MinariDataset", false]], "minaristorage (class in minari.dataset.minari_storage)": [[8, "minari.dataset.minari_storage.MinariStorage", false]], "new() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.new", false]], "observation (minari.stepdata attribute)": [[9, "minari.StepData.observation", false]], "observation_space (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.observation_space", false]], "observations (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.observations", false]], "observations (minari.episodedata attribute)": [[6, "minari.EpisodeData.observations", false]], "read() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.read", false]], "recover_environment() (in module minari.minaridataset)": [[7, "minari.MinariDataset.recover_environment", false]], "reset() (in module minari.datacollector)": [[2, "minari.DataCollector.reset", false]], "rewards (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.rewards", false]], "sample_episodes() (in module minari.minaridataset)": [[7, "minari.MinariDataset.sample_episodes", false]], "seed (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.seed", false]], "set_seed() (in module minari.minaridataset)": [[7, "minari.MinariDataset.set_seed", false]], "spec (minari.minaridataset attribute)": [[7, "minari.MinariDataset.spec", false]], "split_dataset() (in module minari)": [[10, "minari.split_dataset", false]], "step() (in module minari.datacollector)": [[2, "minari.DataCollector.step", false]], "stepdata (class in minari)": [[9, "minari.StepData", false]], "stepdatacallback (class in minari)": [[5, "minari.StepDataCallback", false]], "terminations (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.terminations", false]], "terminations (minari.episodedata attribute)": [[6, "minari.EpisodeData.terminations", false]], "total_episodes (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.total_episodes", false]], "total_episodes (minari.minaridataset attribute)": [[7, "minari.MinariDataset.total_episodes", false]], "total_steps (minari.dataset.minari_storage.minaristorage attribute)": [[8, "minari.dataset.minari_storage.MinariStorage.total_steps", false]], "total_steps (minari.minaridataset attribute)": [[7, "minari.MinariDataset.total_steps", false]], "truncations (minari.data_collector.episodebuffer attribute)": [[3, "minari.data_collector.EpisodeBuffer.truncations", false]], "truncations (minari.episodedata attribute)": [[6, "minari.EpisodeData.truncations", false]], "update_dataset_from_buffer() (in module minari.minaridataset)": [[7, "minari.MinariDataset.update_dataset_from_buffer", false]], "update_episode_metadata() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.update_episode_metadata", false]], "update_episodes() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.update_episodes", false]], "update_from_storage() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.update_from_storage", false]], "update_metadata() (in module minari.dataset.minari_storage.minaristorage)": [[8, "minari.dataset.minari_storage.MinariStorage.update_metadata", false]], "upload_namespace() (in module minari.namespace)": [[11, "minari.namespace.upload_namespace", false]]}, "objects": {"minari": [[2, 0, 1, "", "DataCollector"], [6, 0, 1, "", "EpisodeData"], [4, 0, 1, "", "EpisodeMetadataCallback"], [7, 0, 1, "", "MinariDataset"], [9, 0, 1, "", "StepData"], [5, 0, 1, "", "StepDataCallback"], [10, 1, 1, "", "combine_datasets"], [10, 1, 1, "", "create_dataset_from_buffers"], [10, 1, 1, "", "delete_dataset"], [10, 1, 1, "", "download_dataset"], [10, 1, 1, "", "get_normalized_score"], [10, 1, 1, "", "list_local_datasets"], [10, 1, 1, "", "list_remote_datasets"], [10, 1, 1, "", "load_dataset"], [10, 1, 1, "", "split_dataset"]], "minari.DataCollector": [[2, 1, 1, "", "add_to_dataset"], [2, 1, 1, "", "close"], [2, 1, 1, "", "create_dataset"], [2, 1, 1, "", "reset"], [2, 1, 1, "", "step"]], "minari.EpisodeData": [[6, 2, 1, "", "actions"], [6, 2, 1, "", "id"], [6, 2, 1, "", "infos"], [6, 2, 1, "", "observations"], [6, 2, 1, "", "terminations"], [6, 2, 1, "", "truncations"]], "minari.EpisodeMetadataCallback": [[4, 1, 1, "", "__call__"]], "minari.MinariDataset": [[7, 2, 1, "", "episode_indices"], [7, 1, 1, "", "filter_episodes"], [7, 1, 1, "", "iterate_episodes"], [7, 1, 1, "", "recover_environment"], [7, 1, 1, "", "sample_episodes"], [7, 1, 1, "", "set_seed"], [7, 2, 1, "", "spec"], [7, 2, 1, "", "total_episodes"], [7, 2, 1, "", "total_steps"], [7, 1, 1, "", "update_dataset_from_buffer"]], "minari.StepData": [[9, 2, 1, "", "action"], [9, 2, 1, "", "info"], [9, 2, 1, "", "observation"]], "minari.StepDataCallback": [[5, 1, 1, "", "__call__"]], "minari.data_collector": [[3, 0, 1, "", "EpisodeBuffer"]], "minari.data_collector.EpisodeBuffer": [[3, 1, 1, "", "__len__"], [3, 2, 1, "", "actions"], [3, 1, 1, "", "add_step_data"], [3, 2, 1, "", "id"], [3, 2, 1, "", "infos"], [3, 2, 1, "", "observations"], [3, 2, 1, "", "rewards"], [3, 2, 1, "", "seed"], [3, 2, 1, "", "terminations"], [3, 2, 1, "", "truncations"]], "minari.dataset.minari_storage": [[8, 0, 1, "", "MinariStorage"]], "minari.dataset.minari_storage.MinariStorage": [[8, 2, 1, "", "action_space"], [8, 1, 1, "", "apply"], [8, 2, 1, "", "data_path"], [8, 1, 1, "", "get_episode_metadata"], [8, 1, 1, "", "get_episodes"], [8, 1, 1, "", "get_size"], [8, 2, 1, "", "metadata"], [8, 1, 1, "", "new"], [8, 2, 1, "", "observation_space"], [8, 1, 1, "", "read"], [8, 2, 1, "", "total_episodes"], [8, 2, 1, "", "total_steps"], [8, 1, 1, "", "update_episode_metadata"], [8, 1, 1, "", "update_episodes"], [8, 1, 1, "", "update_from_storage"], [8, 1, 1, "", "update_metadata"]], "minari.namespace": [[11, 1, 1, "", "create_namespace"], [11, 1, 1, "", "delete_namespace"], [11, 1, 1, "", "download_namespace_metadata"], [11, 1, 1, "", "get_namespace_metadata"], [11, 1, 1, "", "list_local_namespaces"], [11, 1, 1, "", "list_remote_namespaces"], [11, 1, 1, "", "upload_namespace"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "function", "Python function"], "2": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:class", "1": "py:function", "2": "py:attribute"}, "terms": {"": [2, 4, 5, 10, 12, 13, 14, 16, 17, 18, 19, 20, 32, 315, 317, 319, 320, 322, 324], "0": [2, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 317, 319, 320, 322, 324], "000": [320, 322], "0003": 322, "005": 322, "01": 315, "0123456789abcdefghijklmnopqrstuvwxyzabcdeeeffghijklmnnoopqrrssttuvwxyzz": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "03ac13": [14, 314], "04": 315, "05": 315, "07": 315, "07219": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "08": 315, "09": 315, "0x11f2608b0": 317, "0x12253a940": 317, "0x7efd86f87b80": 204, "0x7efdc9586dc0": 198, "0x7f0193dcaca0": 239, "0x7f01cd929b80": 300, "0x7f0304bc7b80": 285, "0x7f0478684b80": 288, "0x7f04c3126c10": 303, "0x7f06aaa47c10": 306, "0x7f0762089ca0": 119, "0x7f0adb789ca0": 116, "0x7f0af6bc7dc0": 212, "0x7f0b1086aca0": 236, "0x7f0bb3669dc0": 284, "0x7f0bdc6c8b80": 159, "0x7f0c29cc7c10": 264, "0x7f112eb4aca0": 164, "0x7f11dad09ca0": 110, "0x7f13082e9dc0": 272, "0x7f13a0587c10": 147, "0x7f13b27c7dc0": 203, "0x7f17b0669dc0": 275, "0x7f19c0ee6dc0": 201, "0x7f1e3de48b80": 177, "0x7f210054bca0": 266, "0x7f228bd49ca0": 113, "0x7f229b2a7c10": 93, "0x7f2383988dc0": 257, "0x7f251ac89ca0": 101, "0x7f2610b4aca0": 302, "0x7f2c09927b80": 207, "0x7f2d1d527c10": 108, "0x7f2da2ce7c10": 99, "0x7f2ea1ec6c10": 215, "0x7f314daa9ca0": 104, "0x7f31a4827dc0": 71, "0x7f31dcb4aca0": 191, "0x7f339aea6dc0": 290, "0x7f342faa6dc0": 243, "0x7f349ebc9dc0": 281, "0x7f35f7106c10": 195, "0x7f38f2327c10": 57, "0x7f38fb927c10": 287, "0x7f3b47bc9dc0": 60, "0x7f3c31106c10": 170, "0x7f3c93447b80": 276, "0x7f3f7a928ca0": 296, "0x7f41cfbc38b0": 36, "0x7f41e5a27c10": 114, "0x7f424c987c10": 144, "0x7f42dd147c10": 225, "0x7f43c40ec040": 35, "0x7f446094bca0": 269, "0x7f47814eaca0": 185, "0x7f4880447dc0": 83, "0x7f49f6f8aca0": 230, "0x7f4cb42a6c10": 180, "0x7f4e290aaca0": 179, "0x7f4e89b27dc0": 237, "0x7f4eb8b28dc0": 299, "0x7f4f1c3cad30": 59, "0x7f505cf89ca0": 92, "0x7f51a96c7b80": 261, "0x7f51bf246c10": 192, "0x7f520e788dc0": 165, "0x7f54d1b47dc0": 270, "0x7f56fe886b80": 153, "0x7f5991c67dc0": 209, "0x7f5ae04a7dc0": 68, "0x7f5aee38aca0": 194, "0x7f5b70107c10": 102, "0x7f5d0e806dc0": 206, "0x7f60a5528dc0": 125, "0x7f61f9289ca0": 95, "0x7f6306728b80": 126, "0x7f6434e86c10": 77, "0x7f6af6b29ca0": 131, "0x7f6e4d185a60": 216, "0x7f6f9572aca0": 137, "0x7f701b1c9dc0": 305, "0x7f70fed07b80": 213, "0x7f738f0c9ca0": 161, "0x7f73f1186b80": 174, "0x7f7403f0aca0": 182, "0x7f76792cbca0": 197, "0x7f76ac245c10": 254, "0x7f77949c8b80": 291, "0x7f7927347dc0": 260, "0x7f7a3a427c10": 87, "0x7f7a8eceaca0": 245, "0x7f7b39447c10": 117, "0x7f7bc9c27dc0": 149, "0x7f7c276e8ca0": 143, "0x7f7c99545c10": 138, "0x7f7f18f49ca0": 98, "0x7f81566a8dc0": 227, "0x7f82524e6c10": 168, "0x7f8428108dc0": 176, "0x7f84a45caca0": 242, "0x7f8620627b80": 219, "0x7f87999c8ca0": 221, "0x7f8817648ca0": 140, "0x7f89fdf87c10": 252, "0x7f8a1b0e7b80": 210, "0x7f8beb9c8dc0": 248, "0x7f8c6ab87b80": 129, "0x7f8f428aaca0": 308, "0x7f8f44529dc0": 263, "0x7f9211f28dc0": 128, "0x7f93288a7b80": 84, "0x7f961a0a6c10": 122, "0x7f96b48e8dc0": 66, "0x7f99308a8ca0": 146, "0x7f9963268b80": 228, "0x7f9a3bd87c10": 90, "0x7f9a8e3c7b80": 273, "0x7f9d3a044b80": 123, "0x7fa1539c6c10": 162, "0x7fa1888c7c10": 111, "0x7fa6e6b48ca0": 246, "0x7fa7b54c6dc0": 293, "0x7fa857447dc0": 231, "0x7fa85cf48ca0": 56, "0x7fac0508bca0": 200, "0x7fad21507dc0": 74, "0x7fb0373c6c10": 189, "0x7fb319469ca0": 107, "0x7fb514907b80": 282, "0x7fb52aac6c10": 183, "0x7fb954ee8b80": 258, "0x7fbbf6466c10": 132, "0x7fbc5dd08b80": 249, "0x7fbe30dc6b80": 255, "0x7fbe7be28dc0": 158, "0x7fbf8f306b80": 156, "0x7fc173f44b80": 171, "0x7fc42ab49ca0": 65, "0x7fc532206c10": 120, "0x7fc725187b80": 63, "0x7fc75b3c9dc0": 251, "0x7fc79db87b80": 279, "0x7fc7f9507c10": 96, "0x7fc8968c9ca0": 86, "0x7fc9b3f87dc0": 62, "0x7fc9d4b4aca0": 233, "0x7fca4a466b80": 150, "0x7fca67487b80": 75, "0x7fcae76caca0": 188, "0x7fcc1ec48c10": 222, "0x7fcf66147dc0": 309, "0x7fd05d6c6c10": 186, "0x7fd2478a7dc0": 152, "0x7fd2b9ea7b80": 72, "0x7fd4fe707c10": 297, "0x7fd67c389ca0": 167, "0x7fd917787ca0": 240, "0x7fde898c7ca0": 234, "0x7fdf8b548ca0": 134, "0x7fe334787c10": 141, "0x7fe4031c6dc0": 80, "0x7fe4f6789ca0": 89, "0x7fe52d4e7b80": 69, "0x7fe6bc3c8ca0": 224, "0x7fe84eae9dc0": 278, "0x7fe962d47b80": 81, "0x7fe97d705a60": 78, "0x7feaa30a7c10": 105, "0x7fed1d947dc0": 267, "0x7ff4219c6dc0": 218, "0x7ff687e69dc0": 173, "0x7ff84a247c10": 135, "0x7ffa23348b80": 294, "0x7ffad1f47dc0": 155, "1": [2, 7, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 322, 324], "10": [12, 13, 134, 188, 315, 317, 319, 320, 322], "100": [2, 10, 12, 14, 38, 39, 40, 314, 315, 322], "1000": [12, 16, 17, 18, 19, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 322], "1000000": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 314], "1000070": 35, "10010": 36, "1006729": 12, "10087": [25, 29, 41, 54], "101": 315, "10174": 35, "102": 315, "10269": 137, "10292": 138, "10295": 275, "104": 315, "10418": 237, "10452": 276, "105": [311, 315], "10525": 230, "10645": 231, "107": 315, "1077": [14, 314], "108": 315, "10852": 279, "109": 315, "1096": [12, 14, 314], "10_000": [320, 322], "11": [59, 281, 305, 308, 315], "110": 315, "1103": 12, "110390": 176, "11044": 278, "110708": 177, "110887": 195, "111": 315, "111764": 194, "112": 315, "11310": 28, "116": 315, "11956": 32, "12": [12, 203, 204, 315], "12066": 264, "12090": 263, "121": 315, "123": [12, 315, 320], "124": 315, "126": 315, "128": [315, 322, 324], "129": 315, "13": [12, 68, 140, 191, 284, 315], "130": 315, "132": 315, "13210": [49, 50], "133": 315, "13518": 246, "13527": 243, "13568": 252, "13573": 242, "13653": 251, "137": 315, "13735": 245, "139": 315, "14": [35, 36, 315], "1400": 322, "14062": 299, "14071": 300, "14129": 281, "14194": 282, "1430": [20, 21], "144": 315, "148": 315, "14883": 173, "15": [12, 200], "151": 315, "153": 315, "15416": 174, "155": 315, "156560": [33, 34], "157": 315, "158": 315, "15817": 303, "16": [71, 143, 176, 194, 206, 207, 230, 233, 236, 239, 242, 245, 251, 257], "160": 315, "161": 315, "162": 315, "163": 315, "164": 315, "16468": 302, "165": 315, "167": 315, "169": 315, "16x16": 317, "17": [12, 315], "170": 315, "17077": 207, "1709": [25, 29, 41, 54], "171": 315, "172": 315, "17233": 206, "17574": 284, "17640": 285, "177": 315, "17967": 179, "17971": 180, "18": [12, 315], "183": 315, "1872": 322, "19": [12, 31, 56, 74, 80, 146, 315], "1910": 32, "196": 315, "19641": 197, "19687": 198, "19694": 305, "19764": 306, "1_000": [322, 324], "1e": 320, "1f": 322, "2": [2, 10, 12, 15, 16, 17, 18, 19, 20, 21, 25, 29, 30, 31, 32, 33, 34, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 86, 87, 89, 90, 104, 105, 137, 138, 173, 174, 182, 183, 197, 198, 230, 231, 233, 234, 278, 279, 317, 319, 322], "20": [12, 209, 210, 315, 322], "200": [22, 23, 24, 26, 27, 28, 51, 52, 53], "2000000": 311, "2004": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "2017": [25, 29, 41, 54], "2019": 32, "2020": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "2021": [15, 322], "2022": 315, "2023": 315, "2024": 315, "2026": 311, "2059": 12, "21": 12, "211": 315, "218": 315, "22": [12, 15, 62, 65, 77, 125, 128, 131, 155, 170, 215, 218, 221, 224, 227, 254, 287, 290, 293, 296, 299, 302, 315], "224": 315, "22608": 134, "23": 12, "239": 315, "24": [14, 25, 29, 38, 39, 40, 41, 54, 322], "240": 315, "241": 315, "244": 315, "24458": 135, "245": 315, "248": 315, "249": 315, "2498": 152, "25": [12, 14, 24, 25, 28, 29, 40, 41, 53, 54, 314, 315, 322], "2500": [149, 150], "2506": 153, "251": 315, "252": 315, "253": 315, "254": 315, "255": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317], "256": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 322, 324], "257": 315, "259": 315, "26": [26, 27, 28, 315], "26083": 309, "261": 315, "262": 315, "264": 315, "26545": 308, "266": 315, "267": 315, "268": [15, 315], "27": [16, 17, 18, 19, 20, 21, 315], "27634": 209, "27824": 210, "28": [12, 22, 23, 24, 315], "280": 31, "28723": 257, "28749": 258, "29": 315, "29248": 140, "2937": 86, "29617": 68, "29790": 69, "29981": 141, "29992": 216, "2d": [15, 30], "2f": 322, "3": [2, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317, 322], "30": [51, 52, 53, 322], "30147": 215, "305": 315, "3092": 87, "31": 315, "32": 324, "3360": [43, 44], "33974": 60, "34": 315, "34387": 59, "3546": 90, "3601": 89, "3606": 26, "3653": 93, "3736": [14, 38], "37446": 143, "3753": 92, "3758": 51, "3768": 95, "3822": 96, "38624": 144, "38971": 71, "39": [12, 22, 23, 24, 51, 52, 53], "39844": 155, "39896": 72, "4": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 314, 317, 319, 320], "40746": 156, "40928": 200, "41364": 201, "42": [317, 319, 322, 324], "4209": 31, "4316": 98, "43527": 183, "4356": [14, 314], "4358": 22, "43630": 182, "4438": 101, "4456": 102, "45": [14, 38, 39, 40, 322], "450": [33, 34], "4505": 99, "46": [26, 27, 28], "46049": 291, "4636": 248, "46541": 290, "4702": 249, "4752": [45, 46], "480": 322, "4866": 122, "49093": 287, "4929": 105, "4957": 164, "4958": [14, 39], "4992": 107, "499206": [14, 39], "4994": 108, "5": [12, 14, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 320, 322], "50": [22, 25, 26, 29, 38, 41, 51, 54, 320, 322], "500": 324, "5000": [12, 14, 23, 27, 40, 52, 314, 322], "500000": [14, 38], "5025": 12, "50307": 288, "5063": 165, "5065": 123, "5066": 104, "5071": 111, "5080": 116, "50_000": 322, "5152": 117, "5158": 113, "5173": 110, "52": 315, "5217": 114, "52366": 78, "5251": 119, "52531": 77, "52700": 254, "5297": 158, "5316": 80, "5373": 84, "54": 315, "5409": 81, "5429": 120, "5436": 83, "5440": 159, "54757": 297, "55": 315, "56141": 132, "56411": 296, "56806": 255, "57": 315, "5733": 167, "5738": 239, "5751": 240, "57564": 131, "5769": 212, "5807": 162, "5874": 213, "5893": 168, "5897": 234, "59": [31, 33, 34], "590": 36, "59130": 146, "5915": 161, "5939": 126, "5956": 125, "59577": 147, "5971": 233, "6": [12, 59, 71, 72, 89, 90, 92, 93, 95, 96, 116, 117, 143, 144, 194, 195, 269, 270, 281, 282, 305, 308, 315], "60": 315, "6000": 311, "60202": 75, "604": 14, "605": 12, "6199": 260, "621": [33, 34], "6210": 261, "62345": 185, "6241": 56, "6242": 57, "62651": 186, "62960": 74, "638": 14, "65395": 188, "65517": 189, "6687": 227, "6729": [12, 14, 24, 314], "6810": 228, "69": 322, "7": [12, 14, 31, 33, 34, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 314, 315, 317, 322], "700": [20, 21], "7009": 267, "7030": 266, "71": 315, "72292": 129, "73": 315, "7314": 219, "73446": 170, "7351": 218, "73718": 128, "7379": 225, "73810": 171, "7399": 224, "75": 315, "75695": 293, "76225": 294, "77": 315, "7824": 273, "7858": 222, "7882": 272, "8": [12, 15, 16, 17, 18, 19, 20, 21, 30, 42, 83, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 158, 161, 164, 167, 200, 201, 212, 260, 263, 311, 315, 320], "80": [16, 17, 18, 19, 315], "8055": 221, "80946": 62, "81715": 191, "82": 315, "82424": 192, "83": 315, "83170": 63, "8366": 269, "84": 315, "8428": 270, "84759": 65, "86": 315, "87": 315, "87126": 66, "88": 315, "884": 322, "9": [12, 31, 33, 34, 173, 197, 200, 201, 248, 275, 278], "90": [20, 21, 315], "900": 322, "92": 315, "93": 315, "95": 315, "9525": [47, 48], "96": 315, "99": [315, 320, 322], "9942": 53, "9950": 236, "9958": 203, "9994": 204, "A": [2, 8, 13, 32, 314, 320, 322], "And": 324, "As": [6, 13, 315, 320, 324], "At": [16, 17, 18, 19, 20], "But": [317, 322], "By": [320, 322], "For": [1, 2, 10, 11, 12, 13, 30, 315, 317, 320, 324], "If": [2, 7, 8, 10, 11, 12, 13, 14, 315, 317, 320, 322], "In": [12, 13, 315, 317, 319, 320, 322, 324], "It": [10, 315, 320, 322], "No": 317, "Not": [14, 22, 23, 24, 26, 27, 28, 38, 39, 40, 51, 52, 53], "On": [13, 320, 322], "The": [2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 314, 315, 317, 319, 320, 324], "Then": [317, 320, 322], "There": [12, 25, 29, 41, 54, 322], "These": [10, 14, 25, 29, 30, 32, 41, 42, 54, 315, 320], "To": [1, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 322, 324], "With": 14, "_": [2, 12, 317, 319, 320, 322, 324], "_0": 320, "__call__": [4, 5, 319, 320], "__init__": [320, 324], "__len__": 3, "_build": 1, "_check_valid_cel": 320, "_gen_miss": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317], "_index_0": 315, "_index_1": 315, "_max": 10, "_min": 10, "_score": 10, "_script": 315, "a1efe4": [14, 314], "a256f8": 14, "a5a5a1": 14, "a_hat": 324, "a_pr": 324, "a_t": 322, "ab": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "abil": 12, "abl": [12, 42], "abort": 14, "about": [1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317], "abov": [12, 315, 317, 319, 322], "abspath": 324, "abstract": 12, "ac": 324, "access": [8, 12, 14, 315, 320], "account": [11, 320], "accumul": [16, 17, 18, 19, 20, 21, 320, 324], "accumulated_rew": 324, "accur": 322, "achiev": [12, 320, 324], "achieved_go": [16, 17, 18, 19, 20, 21, 31, 33, 34, 43, 44, 45, 46, 47, 48, 49, 50, 319, 320], "achieved_goal_cel": 320, "acrobot": 12, "across": [10, 13, 315], "act": 315, "action": [2, 3, 5, 6, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "action_id": 320, "action_idx": 320, "action_spac": [2, 8, 10, 12, 13, 315, 317, 319, 320, 324], "action_space_subset": 319, "action_spec": 322, "actionobjdoor": [56, 57, 310], "activ": [15, 322], "activation_class": 322, "activation_fn": 322, "actor": 322, "actor_extractor": 322, "actor_mlp": 322, "actor_modul": 322, "actor_net": 322, "acttyp": [2, 10], "actual": 320, "actuat": [30, 42], "ad": [5, 7, 8, 10, 12, 13, 43, 44, 45, 46, 47, 48, 49, 50, 315, 319], "adam": [15, 322, 324], "adapt": [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309], "add": [2, 3, 4, 5, 7, 8, 14, 43, 44, 45, 46, 47, 48, 49, 50, 315, 320, 322], "add_step_data": 3, "add_to_dataset": [2, 12], "addit": [2, 5, 7, 11, 12, 13, 315], "addition": [15, 315], "additional_dataset": 315, "additional_group": 315, "additional_wrapp": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "address": 320, "adher": 315, "adjust": 320, "adroit_door": [22, 23, 24], "adroit_h": 14, "adroit_hamm": [26, 27, 28], "adroit_hand": [14, 22, 23, 24, 26, 27, 28, 38, 39, 40, 51, 52, 53], "adroit_pen": [14, 38, 39, 40], "adroit_reloc": [51, 52, 53], "adroithanddoor": [12, 13, 22, 23, 24, 25, 30, 315], "adroithanddoorenv": [22, 23, 24], "adroithandhamm": [26, 27, 28, 29, 30, 315], "adroithandhammerenv": [26, 27, 28], "adroithandpen": [14, 30, 38, 39, 40, 41, 315, 322], "adroithandpenenv": [38, 39, 40], "adroithandreloc": [30, 51, 52, 53, 54, 315], "adroithandrelocateenv": [51, 52, 53], "advantag": [320, 322], "after": [2, 4, 6, 9, 10, 13, 14, 315, 320, 324], "again": [16, 17, 18, 19, 20, 21], "agent": [9, 15, 16, 17, 18, 19, 20, 37, 42, 43, 44, 45, 46, 47, 48, 49, 50, 319, 320, 322, 324], "aggress": 320, "agnost": [2, 322], "aim": [13, 320, 322], "al": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320, 322], "alex": [12, 16, 17, 18, 19, 20, 21], "alexdavei": 315, "alexdavey0": [16, 17, 18, 19, 20, 21], "algo": 324, "algorithm": [2, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 322], "algorithm_nam": [2, 10, 12, 13, 317, 319, 320, 324], "all": [8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 30, 31, 32, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 314, 315, 317, 321, 322, 324], "allow": [12, 13, 315, 320, 324], "alon": 320, "along": [30, 42], "alreadi": [8, 12, 14, 315, 319, 320, 322], "also": [10, 12, 14, 16, 17, 18, 19, 20, 21, 314, 315, 317, 319, 320, 322], "alwai": 320, "among": 315, "amount": [12, 320], "amp": 315, "an": [4, 7, 10, 11, 12, 13, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 48, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320, 322], "andrea": 311, "ani": [2, 5, 6, 7, 8, 9, 10, 11, 12, 315, 319, 320], "annot": 315, "anoth": [2, 5, 8, 12, 13, 25, 29, 41, 54, 320, 322], "anssi": 15, "ant": [16, 17, 18, 19, 20, 21, 30, 311, 313], "ant_maze_v4": [16, 17, 18, 19, 20, 21], "ant_v5": 311, "antenv": 311, "antmaz": [12, 16, 17, 18, 19, 20, 21], "antmaze_larg": [15, 17], "antmaze_large_diverse_gr": [15, 16], "antmaze_medium": [15, 19], "antmaze_medium_diverse_gr": [15, 18], "antmaze_umaz": [15, 20, 21], "antmazeenv": [16, 17, 18, 19, 20, 21], "antonin": 15, "apart": 315, "api": [11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 320, 324], "appear": [12, 315], "append": [3, 8, 12, 315, 322], "appli": [8, 317], "applic": [12, 315], "appreci": 315, "approach": 320, "appropri": 13, "approx": 322, "approxim": 322, "apr": [15, 42, 320], "apt": 322, "ar": [2, 6, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 320, 322], "arang": 322, "aravind": [25, 29, 41, 54], "aravindr93": 14, "arbitrari": [13, 315], "arbitrarili": 13, "arena": [47, 48], "arg": [14, 315, 320, 322], "argmax": [320, 324], "argument": [4, 5, 10, 12, 13, 315], "argv": 324, "around": [317, 322], "arrai": [10, 13, 320], "arrow": [13, 315], "arxiv": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "as_tensor": 324, "ashlei": 15, "assert": [22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 317, 324], "assign": 10, "associ": 13, "attach": 13, "attempt": 322, "attr": 315, "attribut": [2, 4, 10, 12, 13, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "authent": 11, "author": [2, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 320, 324], "author_email": [2, 10, 12, 13, 315, 317, 320, 324], "auto": [315, 322, 324], "auto_cast_to_devic": 322, "autobuild": 1, "autogener": 315, "automat": [1, 2, 13, 315], "autoreset": 14, "auxiliari": 2, "avail": [7, 10, 12, 14, 314, 315, 317, 322], "averag": [2, 10, 322], "avg": 322, "avjmachin": 315, "avoid": [315, 322], "awai": 315, "ax": 322, "axi": [30, 42, 320, 322], "b": [1, 14, 314], "b64encod": 322, "babyai": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 310, 315], "babyaimissionspac": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "back": [317, 320], "background": 315, "backpropag": 322, "backward": [322, 324], "badg": 315, "balanc": 324, "balisujohn": 315, "ball": [15, 30, 42, 54, 320], "bamboofungu": 315, "bar": 14, "base": [12, 14, 315, 320, 322], "base64": 322, "base_env": 322, "baselin": 15, "baselines3": [15, 324], "basi": 315, "basic": [315, 322], "batch": [322, 324], "batch_first": 324, "batch_siz": [322, 324], "becaus": [15, 16, 17, 18, 19, 20, 21, 42, 322], "been": [12, 42, 315], "befor": [2, 12, 317, 320, 322], "begin": [16, 17, 18, 19, 20, 324], "behav": 322, "behavior": [315, 320, 321, 322, 325], "behavioral_clon": 324, "behaviour": 322, "being": [2, 10, 13, 31, 32, 33, 34, 42, 43, 45, 47, 49], "bellman": 320, "bellow": 315, "belong": 5, "below": [14, 320, 322], "benchmark": [30, 322], "best": 322, "best_model": 324, "beta": [315, 322], "between": [10, 43, 45, 47, 49, 320], "bias": 320, "big": 315, "binari": 13, "bind": 320, "bit": [320, 322], "black": 315, "blob": [317, 320], "block": 322, "blockedunlockpickup": [59, 60, 310], "blue": [242, 243, 245, 246, 322], "board": 29, "bool": [2, 5, 7, 10, 11, 315, 322], "boolean": 10, "bosslevel": [62, 63, 310], "bosslevelnounlock": [65, 66, 310], "bot": [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309], "both": [8, 13, 14, 317, 319], "bottom": 33, "bound": [13, 320, 322], "box": [12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 324], "break": [12, 315, 320, 324], "bucket": [12, 13, 314, 315], "buffer": [2, 3, 7, 8, 10, 12, 315], "bug": 315, "bugfix": 315, "build": [14, 315], "burner": 33, "c": [12, 16, 18, 32, 315], "cabinet": [31, 32, 34], "cach": [2, 12, 315, 322], "calcul": [10, 322], "call": [2, 5, 12, 13, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "callabl": [2, 7, 8, 10, 12, 315, 317], "callback": [2, 4, 5, 315, 319, 320], "can": [2, 4, 5, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "capabl": 12, "captur": 322, "care": 317, "cart": 324, "cartesian": 13, "cartpol": [11, 12, 315, 324], "case": [12, 315, 320], "cd": [1, 12], "cell": [16, 18, 320], "cell_rowcol_to_xi": 320, "cell_to_st": 320, "cell_xy_to_rowcol": 320, "center": 14, "certain": [7, 12, 41], "cff": 315, "challeng": [15, 322], "chang": [1, 11, 315, 320], "changelog": 315, "characterist": [2, 320], "charg": 315, "charset": [13, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "check": [12, 14, 315, 320], "checkpoint": 315, "choic": 322, "choos": [13, 317, 319], "chosen": 320, "ci": 315, "citat": 315, "class": [2, 3, 4, 5, 6, 7, 8, 9, 13, 315, 319, 320, 322, 324], "classic": [12, 320, 324], "classic_control": 12, "classif": 324, "clean": 317, "clear": 2, "clear_episode_buff": 315, "cli": [314, 315], "clip": 320, "clone": [1, 12, 14, 25, 29, 41, 54, 314, 315, 321, 322, 325], "close": [2, 32, 320, 322, 324], "cloud": [12, 13, 315], "cmmcirvin": 315, "code": [2, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 321, 322, 324], "code_permalink": [2, 10, 12, 13, 317, 320, 324], "codelink": 315, "colab": 322, "collate_fn": 324, "collect": [2, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 314, 315, 317, 318, 321, 322], "collector": [2, 320], "collector_env": [315, 320], "collis": 320, "color": [14, 221, 222, 314], "com": [1, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320], "combin": [315, 320], "combine_dataset": [10, 12, 315], "combined_dataset": 10, "come": [13, 14], "command": [12, 14, 315, 324], "commit": 315, "common": [12, 13], "compar": [6, 319], "comparison": 10, "compat": [10, 12, 14, 315, 324], "compatible_minari_vers": 10, "complement": 2, "complet": [10, 32, 33, 34, 315, 322], "complex": [15, 25, 29, 30, 41, 54, 315], "compli": 315, "compliant": [13, 315], "compon": 320, "component_1": 315, "component_2": 315, "compris": 12, "comput": [2, 10, 12, 13, 322], "compute_act": 320, "compute_reward_matrix": 320, "compute_transition_matrix": 320, "concaten": 322, "condit": [7, 12, 315, 322], "configur": [32, 315, 322], "confirm": [14, 322], "conflict": 322, "conjunct": 322, "consid": [8, 315, 320, 322], "consider": 315, "consist": [13, 42, 322], "constantli": 315, "construct": 320, "contact": [11, 12, 317, 324], "contain": [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "content": [13, 14], "continu": [10, 12, 13, 42, 43, 44, 45, 46, 47, 48, 49, 50, 320], "continuing_task": [16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50, 320], "contribut": [1, 12, 315, 320], "contributor": 315, "control": [12, 15, 42, 43, 44, 45, 46, 47, 48, 49, 50, 315, 322, 324], "conveni": 322, "convent": 315, "convers": [315, 317], "convert": [2, 320, 322], "coordin": 320, "copi": [315, 322], "core": 317, "corl": 322, "corr": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "correct": [315, 320, 322], "correspond": [2, 10, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 320, 324], "could": [15, 322], "cover": 322, "coverag": 315, "cpu": 322, "creat": [2, 5, 7, 8, 13, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 322, 324], "create_dataset": [2, 12, 315, 317, 319, 320, 324], "create_dataset_from_buff": [10, 12, 13, 315], "create_dataset_from_collector_env": 315, "create_namespac": 11, "creation": [2, 12, 13, 315], "cross": 324, "crossentropyloss": 324, "cuda": 322, "cumul": [320, 322], "curat": 315, "current": [5, 10, 13, 14, 315, 320, 322], "current_cel": 320, "current_control_target_id": 320, "current_control_target_xi": 320, "current_st": 320, "custom": [2, 4, 12, 315, 318, 320, 321], "custom_space_seri": 317, "customstepdatacallback": 5, "customsubsetstepdatacallback": 319, "cython": 315, "d": [12, 322], "d3rlpy": 315, "d4rl": [10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 314, 315, 318, 321, 322], "da": 320, "dampen": 320, "dapg": [14, 23, 24, 25, 27, 28, 29, 39, 40, 41, 52, 53, 54], "data": [2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 314, 315, 317, 322, 324], "data_collector": 319, "data_format": [2, 8, 10, 315], "data_path": 8, "data_url": 322, "databas": [10, 11, 14], "databefor": 2, "dataclass": [8, 315], "datacollector": [4, 12, 13, 315, 317, 319, 320, 324], "datacollectorv0": 315, "dataload": [12, 315, 324], "datas": 8, "dataset": [2, 4, 5, 6, 7, 11, 15, 25, 29, 30, 32, 37, 41, 42, 54, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 314, 315, 317, 319, 322], "dataset_cr": [315, 317, 320], "dataset_id": [2, 10, 11, 12, 13, 315, 317, 319, 320, 322, 324], "dataset_nam": [2, 10, 13, 14, 320], "dataset_s": 315, "dataset_v1": 315, "dataset_v2": 315, "dataset_v3": 315, "datasets_to_combin": [10, 315], "davei": [12, 16, 17, 18, 19, 20, 21], "de": [12, 14, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 51, 52, 53], "debug": [224, 225, 233, 234, 239, 240], "decent": 322, "decod": 322, "deep": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "def": [5, 317, 319, 320, 322, 324], "default": [2, 5, 7, 8, 10, 11, 12, 13, 315, 322], "default_interaction_typ": 322, "defin": [10, 13, 317, 319, 324], "definit": 315, "del": [317, 319], "deleg": 315, "delet": [317, 319], "delete_dataset": [10, 317, 319], "delete_namespac": 11, "demonstr": [22, 24, 25, 26, 28, 29, 31, 32, 38, 40, 41, 51, 53, 54, 322], "dens": [14, 22, 23, 24, 26, 27, 28, 38, 39, 40, 42, 51, 52, 53, 315, 322], "depend": [12, 13, 315], "deprec": 315, "descent": 322, "describ": [11, 13, 315], "descript": [2, 10, 11, 13, 14, 15, 25, 29, 30, 32, 37, 41, 42, 54, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 312, 313, 315], "deseri": 317, "deserialize_custom_spac": 317, "deserialize_spac": 317, "design": 322, "desir": [32, 320], "desired_cel": 320, "desired_go": [16, 17, 18, 19, 20, 21, 31, 33, 34, 43, 44, 45, 46, 47, 48, 49, 50, 319, 320], "detail": 322, "detect": 315, "determin": 320, "determinist": [12, 320, 322], "develop": 315, "deviat": [13, 320], "devic": [14, 322], "dexter": [25, 29, 41, 54], "df8ff078652a": [15, 42, 320], "dict": [2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 31, 33, 34, 35, 36, 43, 44, 45, 46, 47, 48, 49, 50, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317, 319], "dict_kei": 319, "dictionari": [2, 3, 5, 7, 8, 9, 10, 12, 13, 315, 318, 320, 321, 322], "differ": [10, 12, 13, 42, 315, 317, 320, 322], "dimens": [322, 324], "dimension": [13, 25, 29, 41, 54], "dir": 315, "direct": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317, 322], "directli": [12, 315, 320, 322, 324], "directori": [2, 8, 11, 12, 322], "dirhtml": 1, "disabl": 2, "disable_env_check": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "discount": 320, "discret": [13, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317, 320, 324], "disk": [8, 12, 13, 315, 317, 319, 324], "displai": [315, 322, 324], "dist": 320, "distanc": [43, 45, 47, 49], "distractor": [302, 303, 308, 309], "distribut": [25, 29, 41, 54, 322], "distribution_class": 322, "distribution_kwarg": 322, "divers": [12, 15], "divid": [12, 320], "do": [320, 322], "doc": [1, 315, 317, 320], "document": [12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "doe": 315, "doesn": [8, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320], "dof": [15, 25, 29, 30, 41, 54, 322], "domain": [15, 25, 29, 30, 41, 42, 54], "don": [13, 315, 317, 319, 320], "done": [12, 320, 322, 324], "door": [10, 12, 13, 14, 22, 23, 24, 30, 32, 314, 315], "doors_open": [128, 129, 131, 132, 155, 156], "dormann": 15, "dot": [320, 322], "doubl": 322, "doubletofloat": 322, "down": 320, "download": [13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 321, 322, 324], "download_dataset": 10, "download_namespace_metadata": 11, "driven": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "drop": 315, "dt": 320, "dtype": [315, 319, 320, 322], "due": [315, 320], "dump": 317, "dure": [12, 13, 315, 320, 322], "dynam": 320, "e": [1, 7, 10, 12, 315, 322], "e731": 317, "each": [2, 4, 5, 6, 8, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 319, 320, 322, 324], "earlier": 317, "edit": [2, 5], "effect": [25, 29, 41, 54], "effici": 315, "element": [6, 13], "elif": 320, "elimin": 320, "ell": 322, "elliottow": 315, "els": [12, 315, 320, 322], "email": [2, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "embed": 322, "empti": [11, 317, 320], "emptyenv": 317, "enabl": 317, "encapsul": 13, "encount": 317, "encourag": [13, 315], "end": [13, 315], "enerrio": 315, "enh": 315, "enhanc": 315, "ensur": 322, "entri": 320, "entropi": 324, "entry_point": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "env": [2, 5, 7, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "env_id": 322, "env_nam": [2, 10, 13], "env_spec": [8, 13], "envid": 2, "environ": [2, 5, 6, 7, 8, 9, 10, 13, 14, 25, 29, 30, 32, 37, 41, 54, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 314, 315, 317, 319, 320, 324], "environment_st": 5, "envspec": [2, 8, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "eol": 315, "ep": 12, "episod": [2, 3, 4, 6, 7, 8, 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "episode_0": 315, "episode_1": 315, "episode_2": 315, "episode_id": [12, 315], "episode_indic": [7, 8, 12], "episode_metadata_callback": [2, 4], "episode_reward": 322, "episodebuff": [7, 8, 10], "episodedata": [7, 12, 315], "episodemetadatacallback": [2, 13, 315], "episodes_gener": 12, "epoch": 324, "epsiodedata": 8, "equal": [2, 10, 13], "equat": 320, "equiv": 322, "equlival": 320, "ernestu": 15, "error": [10, 315, 317, 320, 322], "essenti": 322, "estim": [2, 10, 322], "et": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320, 322], "etc": 322, "euclidean": [43, 45, 47, 49], "evad": 320, "eval_env": [2, 7, 10, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "eval_env_spec": [12, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "eval_interv": 322, "eval_reward_log": 322, "eval_td": 322, "evalu": [2, 7, 10, 12, 315, 322, 324], "evaluate_polici": 322, "everi": [1, 10, 12, 13, 21, 320, 322], "everyth": 322, "exampl": [2, 10, 11, 12, 13, 14, 315, 317, 320, 321, 322], "example_env": 322, "except": [8, 315, 317, 322], "excit": 315, "execut": 324, "exerpt": 315, "exist": [8, 11, 14, 315, 319, 320], "exit": 14, "expect": 319, "expectil": 322, "experienc": 315, "experiment": 11, "expert": [2, 10, 12, 13, 14, 15, 22, 25, 26, 29, 36, 37, 38, 41, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 312, 314, 315, 322, 324], "expert_dataset": 311, "expert_polici": [2, 10], "expertpolici": [36, 324], "explain": [315, 320], "explicit": [315, 322], "explicitli": 315, "explor": 315, "exploration_act": 320, "explorationtyp": 322, "exponenti": [43, 45, 47, 49], "export": [12, 315], "extend": [12, 319], "extra": [2, 4, 5, 315, 320], "extract": 322, "extrapol": 322, "f": [12, 14, 315, 317, 319, 322, 324], "f01e2c": 14, "f401": 320, "f4bf75": 14, "face": [11, 12], "facilit": [10, 12, 315], "factor": 320, "factori": 3, "fail": [16, 17, 18, 19, 20, 21, 315], "fals": [2, 7, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 317, 319, 320, 322, 324], "familiar": 322, "farama": [1, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 320, 322, 324], "favor": 315, "fc1": 324, "fc2": 324, "fc3": 324, "featur": [11, 12, 314, 315, 324], "fed000": 14, "few": 315, "ff00ff": [14, 314], "ffmpeg": 322, "field": [13, 315, 322], "fig": 322, "figsiz": 322, "figur": 322, "file": [2, 4, 11, 12, 13, 14, 314, 315, 319], "file_fold": 315, "filter": [7, 10, 314, 315], "filter_dataset": [12, 315], "filter_episod": [7, 12, 315], "final": [6, 12, 15, 315, 317, 319, 320, 322], "final_scor": 322, "find": 319, "findobjs5": [68, 69, 71, 72, 74, 75, 310], "findobjs6": [71, 72, 310], "findobjs7": [74, 75, 310], "fine": [14, 23, 25, 27, 29, 39, 41, 52, 54, 311, 312], "first": [11, 12, 315, 317, 319, 320, 322], "first_color": [242, 243, 245, 246], "fit": [319, 322], "fix": [21, 30, 42, 315, 322], "flag": [10, 315, 322], "flatten": 315, "flexibl": 12, "flip": [16, 17, 18, 19, 20, 21, 32], "float": [2, 8, 10, 13, 319, 322], "float32": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 311, 315, 320, 324], "float64": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 311, 319, 322], "floppy_disk": 315, "folder": [1, 324], "follow": [2, 5, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 320, 322], "font": [14, 314], "forc": [10, 14, 30, 42, 320], "force_download": [10, 315], "form": [10, 13, 320], "format": [2, 8, 10, 12, 13, 315, 317], "formula": [10, 320], "forward": [11, 13, 322, 324], "found": [10, 13], "foundat": [1, 12, 14, 30, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320], "four": 324, "fourroom": [30, 37], "fourroomsenv": [35, 36], "fp": 322, "frac": 10, "frame": 322, "framework": 322, "franka_kitchen": [31, 33, 34], "frankakitchen": [30, 31, 32, 33, 34, 315], "from": [2, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "from_pixel": 322, "froze": 315, "fu": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "full": [4, 8, 12, 36, 37, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308, 315, 322], "fulli": 315, "fullob": [55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307], "fullyobswrapp": [56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308], "function": [7, 8, 10, 12, 13, 14, 35, 36, 42, 43, 44, 45, 46, 47, 48, 49, 50, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317, 320, 322, 324], "fundament": [15, 42, 320], "futur": [11, 315, 320], "g": [10, 12, 21, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 322], "gain": 320, "gamma": [320, 322], "gather": 322, "gcp": [11, 12, 13, 314, 315], "gen_dataset_md": 315, "gener": [2, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 314, 315, 317, 319, 320], "generate_path": 320, "get": [7, 8, 10, 12, 315, 317, 319, 320, 322, 324], "get_episod": 8, "get_episode_metadata": [8, 13], "get_namespace_metadata": 11, "get_next_st": 320, "get_normalized_scor": [2, 10, 315], "get_q_valu": 320, "get_siz": 8, "git": [1, 12], "github": [1, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 312, 315, 317, 320], "give": [12, 13, 14, 320, 322], "given": [12, 13, 14], "gleav": 15, "global": [2, 13, 320], "global_target_id": 320, "global_target_xi": 320, "glr": 315, "gmail": [16, 17, 18, 19, 20, 21, 35, 36], "go": [1, 320], "goal": [15, 16, 17, 18, 19, 20, 21, 32, 36, 37, 42, 43, 44, 45, 46, 47, 48, 49, 50, 317, 319, 320, 322], "goal_cel": 320, "goe": [36, 37], "googl": [12, 13, 315, 322], "goto": [77, 78, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 155, 156, 310], "gotodoor": [80, 81, 310], "gotoloc": [83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 310], "gotolocals5n2": [86, 87, 310], "gotolocals6n2": [89, 90, 310], "gotolocals6n3": [92, 93, 310], "gotolocals6n4": [95, 96, 310], "gotolocals7n4": [98, 99, 310], "gotolocals7n5": [101, 102, 310], "gotolocals8n2": [104, 105, 310], "gotolocals8n3": [107, 108, 310], "gotolocals8n4": [110, 111, 310], "gotolocals8n5": [113, 114, 310], "gotolocals8n6": [116, 117, 310], "gotolocals8n7": [119, 120, 310], "gotoobj": [122, 123, 149, 150, 152, 153, 310], "gotoobjdoor": [125, 126, 310], "gotoobjmaz": [128, 129, 310], "gotoobjmazeopen": [131, 132, 310], "gotoobjmazes4": [134, 135, 310], "gotoobjmazes4r2": [137, 138, 310], "gotoobjmazes5": [140, 141, 310], "gotoobjmazes6": [143, 144, 310], "gotoobjmazes7": [146, 147, 310], "gotoobjs4": [149, 150, 310], "gotoobjs6": [152, 153, 310], "gotoopen": [155, 156, 310], "gotoredbal": [158, 159, 310], "gotoredballgrei": [161, 162, 310], "gotoredballnodist": [164, 165, 310], "gotoredbluebal": [167, 168, 310], "gotoseq": [170, 171, 173, 174, 310], "gotoseqs5r2": [173, 174, 310], "gradient": 322, "grahamannett": 315, "greater": [12, 315], "green": [317, 322], "grid": 320, "gridworld": 37, "group": [2, 4, 10, 12, 13, 14, 30, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 315, 320], "grow": 315, "gt": 315, "guarante": 13, "gupta": 32, "gym": [2, 5, 7, 10, 12, 315, 317, 319, 320, 322, 324], "gymansium": 12, "gymenv": 322, "gymnaisum": 14, "gymnasium": [2, 5, 7, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "gymnasium_robot": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 320], "gynasium": 315, "h5py": 315, "ha": [12, 21, 42, 315, 320, 322], "hammer": [26, 27, 28, 30, 315], "hand": [13, 16, 18, 25, 29, 41, 54, 320, 322], "hand_dapg": [14, 25, 29, 30, 41, 54], "handl": [8, 12, 314], "hard": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "hat": 322, "hausman": 32, "have": [12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "hdf5": [2, 4, 8, 13, 14, 314, 315, 319, 320], "help": [14, 315, 320], "helper": 322, "here": [322, 324], "hesit": 315, "hf": [10, 12, 315], "hidden": 315, "hidden_s": 322, "hierarch": 12, "high": [25, 29, 41, 54, 315, 319, 320, 322], "higher": 320, "highli": 315, "hill": 15, "hood": 322, "horizon": 32, "host": [12, 14, 25, 29, 30, 32, 41, 54, 314], "how": [1, 2, 315, 317, 319, 320, 322, 324], "howev": [13, 42, 315, 317, 320, 322, 324], "howuhh": 315, "href": 14, "html": 322, "http": [1, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 312, 315, 317, 320, 324], "hub": [12, 315], "hug": [11, 12], "huggingfac": [12, 315], "human": [10, 12, 13, 14, 22, 25, 26, 29, 38, 41, 51, 54, 314, 315, 322, 324], "hyperparamet": 322, "hypothet": [2, 10], "i": [1, 2, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 314, 315, 317, 319, 322, 324], "id": [2, 3, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 320, 324], "idea": 315, "identifi": [2, 10, 11, 13], "ignor": [315, 322], "im": 315, "imag": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317, 322], "imit": [22, 25, 26, 29, 32, 38, 41, 51, 54], "implement": [14, 15, 320, 322], "implicit": [321, 325], "implicitli": 322, "import": [2, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322], "import_bugfix": 315, "improv": [315, 322], "imshow": 322, "in_kei": 322, "includ": [6, 12, 13, 31, 32, 34, 42, 315, 322], "incompat": 14, "incorrect": [8, 315], "increas": 6, "indic": [2, 7, 8, 10, 12, 315], "inf": [12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 311, 319], "infer": 322, "influenc": [320, 322], "info": [2, 3, 5, 6, 9, 12, 13, 315, 320, 324], "inform": [1, 2, 5, 7, 13, 315, 320], "infos_dataset": 315, "infos_subgroup": 315, "init": 315, "initi": [2, 6, 7, 12, 13, 315, 317, 319, 320, 322, 324], "initialis": 322, "input": [5, 7, 12, 13, 322, 324], "input_dim": 324, "insid": 317, "inspir": 320, "instabl": 320, "instal": [1, 10, 14, 314, 315, 317, 322, 324], "instanc": [7, 315], "instanti": 14, "instead": [12, 13, 315, 320, 322], "instruct": 315, "int": [2, 3, 6, 7, 8, 10, 13, 315, 320], "int64": [315, 324], "int_": [7, 320], "integ": 13, "intend": 7, "interact": 32, "interest": 322, "interfac": 12, "intern": [12, 315], "introduc": [15, 25, 29, 41, 54, 315, 322], "invers": 322, "involv": [30, 42, 320], "ipynb": [317, 319, 320, 322, 324], "ipython": 322, "iql": 322, "iql_torchrl": 322, "iqlloss": 322, "is_avail": 322, "is_shar": 322, "isinst": 324, "isol": 315, "issu": [315, 322], "item": [2, 320, 322, 324], "iter": [7, 8, 12, 13, 15, 42, 320, 322], "iterate_episod": [7, 12, 315], "its": [10, 315, 317, 320, 322], "itself": 12, "j": 320, "jamartinh": 315, "josephcarrino": 315, "journal": 15, "json": [13, 14, 315, 317], "jupyt": [317, 319, 320, 321, 322, 324], "just": [12, 317, 322], "justin": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "k": 32, "k_": 320, "k_d": 320, "k_i": 320, "k_p": 320, "kabuki": 315, "kaixin96": 315, "kallinteri": 311, "kanervisto": 15, "keep": [12, 315], "kei": [2, 5, 8, 10, 11, 12, 14, 315, 319, 320, 322], "kept": 13, "kernel": 322, "kettl": [31, 32, 33, 34], "key_fil": 14, "key_path": 315, "keycorridor": [176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 310], "keycorridors3r1": [179, 180, 310], "keycorridors3r2": [182, 183, 310], "keycorridors3r3": [185, 186, 310], "keycorridors4r3": [188, 189, 310], "keycorridors5r3": [191, 192, 310], "keycorridors6r3": [194, 195, 310], "kitchen": [30, 31, 33, 34, 315], "kitchenenv": [31, 33, 34], "kitsch": 315, "know": 320, "kostrikov": 322, "kumar": 32, "kwarg": [2, 5, 7, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 319], "l": 322, "l2": 322, "l_": 322, "l_2": 322, "l_pi": 322, "l_q": 322, "l_v": 322, "lag": 322, "lambda": [7, 12, 315, 317, 320], "lambert": [15, 42, 320], "larg": [12, 15, 42, 315], "larger": [315, 320, 322], "largest": 315, "last": 315, "last_episode_id": 315, "later": [2, 10, 315, 322], "latest": [10, 14, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 315, 320], "latest_vers": 10, "latter": [10, 13, 322], "layer": 322, "lazcano": [12, 14, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 51, 52, 53], "lazi": 322, "lazylinear": 322, "lead": [13, 16, 17, 18, 19, 20, 21, 320], "learn": [12, 14, 15, 25, 29, 30, 32, 37, 41, 42, 54, 314, 315, 317, 319, 320, 321, 324, 325], "learnin": [15, 42, 320], "leav": 12, "left": [12, 320, 322], "leftarrow": [320, 322], "len": [320, 322], "length": [3, 324], "less": 320, "let": [317, 319, 320, 324], "level": 13, "levin": 32, "lib": 322, "librari": [12, 310, 315, 317, 324], "light": [31, 32, 33, 34], "like": [11, 12, 14, 317, 322, 324], "limit": [320, 322], "linalg": 320, "line": [14, 319], "linear": 324, "link": [2, 10, 12, 13], "linux": 12, "list": [2, 3, 7, 8, 12, 13, 314, 315, 322, 324], "list_local_dataset": [10, 12, 315, 319], "list_local_namespac": 11, "list_remote_dataset": [10, 315], "list_remote_namespac": 11, "ll": [317, 319], "load": [2, 11, 13, 315, 317, 322, 324], "load_dataset": [2, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 324], "loc": [227, 228, 322], "local": [10, 13, 315, 317, 319, 322, 324], "local_dataset": 319, "locat": [12, 15, 16, 17, 18, 19, 20, 21, 30, 42, 43, 44, 45, 46, 47, 48, 49, 50, 320, 322], "log": [315, 322, 324], "logger": 315, "long": [32, 320], "longer": 315, "look": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317], "loop": [12, 322, 324], "loos": 315, "lose": 12, "loss": 324, "loss_actor": 322, "loss_dict": 322, "loss_fn": 324, "loss_funct": 322, "loss_log": 322, "loss_modul": 322, "loss_qvalu": 322, "loss_valu": 322, "lost": 315, "low": [315, 319, 320, 322], "lower": 13, "lr": 322, "lynch": 32, "m_": 322, "machin": [13, 15], "maco": 12, "made": [1, 315], "mai": [11, 12, 320, 322], "main": [2, 7, 311, 315, 317, 320, 322], "main_data": [14, 314, 315], "major": 315, "make": [1, 2, 7, 12, 315, 317, 319, 320, 322, 324], "make_value_estim": 322, "manag": 315, "mandatori": [13, 315], "mani": 13, "manipul": [25, 29, 41, 54, 322], "manual_se": [322, 324], "map": [12, 16, 18, 320, 322], "map_length": 320, "map_width": 320, "margin": 322, "markdown": 315, "markovian": [15, 42], "master": 320, "match": 10, "mathbb": 322, "mathcal": 322, "matplotlib": 322, "matrix": 320, "max": [320, 322], "max_": [320, 322], "max_a": 322, "max_episode_step": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320, 322], "max_step": 322, "maximilian": 15, "maximis": 322, "maximum": [2, 10, 13, 320, 322, 324], "maze": [16, 17, 18, 19, 20, 21, 30, 43, 44, 45, 46, 47, 48, 49, 50, 315, 320], "maze2d": [42, 320], "maze_map": [16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50, 320], "maze_solv": 320, "mb": [8, 12, 14, 314], "md": [1, 315], "mdp": [12, 315], "mean": [6, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320, 322], "meant": [2, 315], "measur": [25, 29, 41, 54, 320], "medium": [12, 15, 42, 315], "memor": [15, 42], "memori": [2, 12, 315], "mention": [13, 315, 320, 324], "merg": 14, "messag": 14, "met": 7, "metadata": [2, 4, 7, 8, 10, 12, 14, 315, 319], "method": [12, 15, 42, 315, 317, 320, 322], "metric": 13, "mgoulao": 315, "microwav": [31, 32, 33, 34], "mimic": 15, "min": 322, "minari": [11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 322, 324], "minari_autose": 2, "minari_data": 322, "minari_dataset": [315, 324], "minari_datasets_path": 13, "minari_remot": [10, 12, 315], "minari_storag": 315, "minari_vers": [13, 315], "minaridataset": [2, 10, 12, 13, 315, 324], "minariexperiencereplai": 322, "minaristorag": [2, 7, 10, 13, 315], "minigrid": [30, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 317], "minim": 319, "minimis": 322, "minimum": [2, 10, 12, 13, 315], "minor": 315, "mirana": 319, "misc": 315, "miss": 315, "mission": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317], "mission_func": 317, "missionspac": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317], "missonspac": 317, "mix": [22, 25, 26, 29, 32, 38, 41, 51, 54, 315], "mlp": 322, "model": [311, 312], "modifi": [8, 12, 13, 315, 319], "modul": [317, 319, 320, 322, 324], "modulelist": 322, "moment": 13, "more": [1, 6, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320, 322], "more_dataset": 315, "moreov": [8, 13], "morpholog": 15, "most": [12, 14], "move": [12, 30, 32, 42, 54, 315, 320], "movetwoacross": [197, 198, 200, 201], "movetwoacrosss5n2": [197, 198, 310], "movetwoacrosss8n9": [200, 201, 310], "mp4": 322, "mujoco": [2, 10, 311, 315, 320], "mujuco": 311, "multi": 322, "multibinari": [13, 315], "multidiscret": [13, 315], "multipl": [10, 11, 12, 14, 315, 322], "multiprocess": 315, "must": [5, 7, 8, 10, 12, 13, 315, 322], "my": 12, "n": [7, 12, 13, 14, 320, 324], "n_episod": [7, 12], "n_step": [315, 320], "nail": 29, "name": [2, 10, 11, 12, 13, 14, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308, 314, 315, 317, 324], "namespac": [2, 10, 315], "namespace_metadata": 13, "narrow": [25, 29, 41, 54], "nathan": [15, 42, 320], "navig": [15, 30, 37, 42], "ncol": 322, "ndarrai": [6, 7, 10, 13, 315], "necessari": 322, "need": [8, 12, 315, 317, 319, 320, 322, 324], "neg": [43, 45, 47, 49], "nest": [2, 5, 11, 13, 315], "net": 322, "network": [322, 324], "neural": 324, "never": [32, 33, 320, 322], "new": [2, 8, 10, 12, 16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50, 315, 317, 320, 322, 324], "new_dataset_id": [10, 315], "new_dataset_nam": 14, "newli": [10, 12, 322], "next": [9, 315, 320, 322, 324], "next_cel": 320, "next_episode_id": 315, "next_stat": 320, "nightli": 322, "nn": [322, 324], "no_grad": 322, "noah": 15, "nois": [43, 44, 45, 46, 47, 48, 49, 50, 315, 320], "non": [12, 13, 15, 42], "nondeterminist": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "none": [2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320], "nonetyp": 315, "noqa": [317, 320], "norm": 320, "normal": [2, 322], "normalized_scor": 10, "normalparamextractor": 322, "note": [10, 11, 13, 16, 17, 18, 19, 20, 21, 319, 320, 322], "notebook": [317, 319, 320, 321, 322, 324], "notic": [11, 12], "notimplementederror": 317, "now": [10, 12, 315, 317, 319, 320, 324], "np": [7, 10, 13, 315, 319, 320, 322, 324], "npt": 7, "nrow": 322, "num_act": 320, "num_cel": 322, "num_col": [137, 138, 173, 174], "num_dist": [86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 173, 174], "num_door": [230, 231, 233, 234, 236, 237, 239, 240], "num_episod": [317, 319], "num_episodes_average_scor": [2, 10], "num_epoch": 324, "num_eval_episod": 322, "num_itr": 320, "num_obj": [266, 267, 269, 270], "num_row": [137, 138, 173, 174, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195], "num_stat": 320, "num_step": 2, "number": [2, 6, 7, 10, 12, 13, 14, 315], "numpi": [319, 320, 322, 324], "o": 324, "ob": [2, 5, 12, 315, 320, 324], "object": [7, 8, 9, 12, 25, 29, 32, 37, 41, 54, 315, 317, 322, 324], "objs_per_room": [197, 198, 200, 201, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285], "observ": [2, 3, 5, 6, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "observation_spac": [2, 8, 10, 12, 13, 315, 317, 319, 324], "observation_space_subset": 319, "obstyp": [2, 10], "obtain": [22, 25, 26, 29, 38, 41, 51, 54, 320], "occur": [16, 17, 18, 19, 20, 21], "off": 14, "offici": 315, "offlin": [12, 13, 14, 314, 315, 320, 322, 324], "often": 320, "oibserv": 315, "omar": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "omit": 319, "onc": [1, 12, 320, 322, 324], "one": [2, 6, 7, 8, 12, 25, 29, 41, 42, 54, 315, 322], "one_hot": 324, "onerooms12": [203, 204, 310], "onerooms16": [206, 207, 310], "onerooms20": [209, 210, 310], "onerooms8": [203, 204, 206, 207, 209, 210, 212, 213, 310], "onli": [10, 11, 12, 13, 44, 46, 47, 48, 50, 315, 319, 322], "onlin": 322, "onto": 11, "open": [25, 32, 42, 215, 216, 310, 315, 322], "opendoor": [218, 219, 221, 222, 224, 225, 227, 228, 310], "opendoorcolor": [221, 222, 310], "opendoordebug": [224, 225, 310], "opendoorloc": [227, 228, 310], "opendoorsord": [230, 231, 233, 234, 236, 237, 239, 240], "opendoorsordern2": [230, 231, 310], "opendoorsordern2debug": [233, 234, 310], "opendoorsordern4": [236, 237, 310], "opendoorsordern4debug": [239, 240, 310], "opengl": 322, "openredbluedoor": [242, 243, 310], "openredbluedoorsdebug": [245, 246, 310], "openreddoor": [248, 249, 310], "opentwodoor": [242, 243, 245, 246, 251, 252, 310], "optim": [55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 320, 324], "option": [2, 3, 5, 7, 8, 10, 12, 13, 14, 315], "order": [12, 31, 32, 315, 319], "order_enforc": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "org": [11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320, 324], "organ": [12, 315], "orient": [5, 41, 319], "origin": [10, 12, 25, 29, 30, 32, 41, 42, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 315, 317, 322], "other": [7, 8, 10, 11, 12, 13, 14, 32, 34, 315, 319, 320, 322], "otherwis": [7, 12, 44, 46, 48, 50, 315], "our": [1, 12, 13, 315, 319, 320, 322, 324], "ourselv": 320, "out": [8, 12, 315, 317, 320, 322], "out_featur": 322, "out_kei": 322, "outlin": 319, "output": [8, 317, 319, 320, 322, 324], "output_dim": 324, "outsid": 322, "over": [2, 7, 10, 12, 320, 322], "overal": 322, "overconfid": 322, "overestim": 322, "overrid": [4, 5, 13, 14, 320], "overridden": [4, 5, 10, 315], "overridng": 320, "overshoot": 320, "overview": 322, "overwrit": 11, "own": [10, 12, 315, 320], "p_": 320, "packag": [1, 2, 10, 14, 315, 324], "pad": 324, "pad_sequ": 324, "page": 315, "page_facing_up": 315, "pair": [13, 322], "paper": [25, 29, 41, 54], "paramet": [2, 3, 4, 5, 7, 8, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 322, 324], "parameteris": 322, "part": 322, "partial": [32, 315], "particular": [317, 322], "pass": [2, 4, 7, 10, 12, 319, 322], "past": 315, "path": [8, 10, 11, 12, 13, 14, 43, 44, 45, 46, 47, 48, 49, 50, 315, 320, 324], "path_str": 14, "pathlik": [7, 8], "pbar": 322, "pd": [42, 43, 44, 45, 46, 47, 48, 49, 50, 320], "pen": [14, 30, 38, 39, 40, 315], "per": [2, 315], "perceptron": 322, "perez": [43, 44, 45, 46, 47, 48, 49, 50, 320], "perform": [9, 10, 12, 14, 32, 33, 34, 315, 320, 322, 324], "perimet": [47, 48], "permalink": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "perman": 12, "pettingzoo": 315, "phi": 322, "pi": [320, 322], "pi_": 322, "pick": [16, 18], "pickup": [254, 255, 310], "pickupabov": [257, 258, 310], "pickuploc": [260, 261, 310], "pid": [315, 320], "pip": [1, 2, 10, 12, 13, 14, 314, 317, 322, 324], "pixel": 322, "pixels_onli": 322, "plai": [12, 15], "plan": [315, 319], "planner": [15, 42, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "platform": [12, 13], "pleas": [11, 12, 315, 319], "plot": 322, "plt": 322, "plug": 322, "point": [7, 30, 315, 322], "point_maz": [43, 44, 45, 46, 47, 48, 49, 50], "point_maze_dataset": [315, 320], "pointmaz": [15, 30, 43, 44, 45, 46, 47, 48, 49, 50, 315, 318, 319, 321], "pointmaze_larg": [42, 44], "pointmaze_largedens": [42, 43], "pointmaze_medium": [42, 46, 320], "pointmaze_mediumdens": [42, 45], "pointmaze_open": [42, 48], "pointmaze_opendens": [42, 47], "pointmaze_umaz": [42, 50, 319], "pointmaze_umazedens": [42, 49], "pointmazeenv": [43, 44, 45, 46, 47, 48, 49, 50], "pointmazestepdatacallback": 320, "pole": 324, "polici": [2, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 36, 37, 38, 39, 41, 42, 51, 52, 54, 311, 312, 320, 322], "policy_net": 324, "policynetwork": 324, "polyak": 322, "poorli": 322, "popul": 322, "popular": 314, "pose": [5, 320], "posit": [5, 32, 37, 54, 320, 322], "possibl": [13, 315], "ppo": 324, "pr": 315, "practic": 322, "pre": 315, "precis": 322, "precommit": 315, "predict": [320, 324], "prefix": [10, 315], "prepend": 11, "preprint": 32, "prerequisit": 322, "present": [10, 15, 30, 324], "prevent": 12, "previou": [2, 12, 315], "previous": [15, 315, 320, 324], "principl": 30, "print": [12, 315, 317, 319, 322, 324], "prng": 2, "probabilisticactor": 322, "probabl": 320, "problem": 324, "proce": [14, 324], "procedur": 319, "process": [12, 315, 320, 322], "prod": 324, "produc": 315, "product": 13, "program": 320, "progress": 14, "project": [12, 315], "prompt": [12, 14], "properli": [317, 322], "properti": [7, 322], "proporti": 320, "protonmail": 311, "provid": [10, 12, 13, 14, 15, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 38, 39, 40, 41, 51, 52, 53, 54, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308, 314, 315, 322], "pseudo": 315, "psi": 322, "public": [13, 315, 320], "publicli": 314, "pure": 315, "purpos": [12, 30, 42, 320, 322], "putnext": [272, 273, 275, 276, 278, 279, 281, 282, 284, 285], "putnextloc": [263, 264, 266, 267, 269, 270, 310], "putnextlocals5n3": [266, 267, 310], "putnextlocals6n4": [269, 270, 310], "putnexts4n1": [272, 273, 310], "putnexts5n1": [275, 276, 310], "putnexts5n2": [278, 279, 310], "putnexts6n3": [281, 282, 310], "putnexts7n4": [284, 285, 310], "py": [311, 315, 317, 319, 320, 322, 324], "pyarrow": 315, "pypi": 315, "pyplot": 322, "pyright": 315, "pytest": 315, "python": [12, 314, 315, 317, 319, 320, 321, 322, 324], "python3": 322, "pytorch": [315, 321, 322, 325], "pytorchdataload": 315, "pyvirtualdisplai": 322, "pz": 315, "q": [320, 321, 325], "q_": 322, "q_fn": 320, "q_iter": 320, "q_net": 322, "q_valu": 320, "qiter": [15, 16, 17, 18, 19, 20, 21, 42, 43, 44, 45, 46, 47, 48, 49, 50, 320], "qpo": 320, "quadrup": [15, 30], "quantifi": 322, "queri": 322, "quick": 322, "quickli": 320, "quit": 322, "qvalu": 322, "qvel": 320, "r": [1, 21, 320, 322], "r_t": 322, "raffin": 15, "rais": [8, 10], "rajeswaran": [25, 29, 41, 54], "randn": 320, "random": [2, 7, 10, 12, 17, 19, 20, 37, 42, 43, 44, 45, 46, 47, 48, 49, 50, 317, 319, 320, 322, 324], "random_polici": [317, 319], "randomis": 322, "randomli": [12, 13, 42, 317, 320], "randompolici": 35, "rang": [2, 10, 12, 315, 317, 319, 320, 322, 324], "rate": [16, 17, 18, 19, 20, 21, 320], "rather": 322, "ratio": [22, 25, 26, 29, 38, 41, 51, 54], "rb": 322, "re": [315, 320], "reach": [15, 16, 17, 18, 19, 20, 21, 32, 37, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 315, 320], "read": [8, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 322], "readabl": 13, "readi": 315, "readm": 315, "real": 15, "reason": 320, "rebuild": 1, "receiv": 324, "recent": [12, 322], "recommend": 12, "record": [2, 12, 315, 319, 320], "record_info": [2, 12, 13, 320], "recov": [2, 7, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 322], "recover_env": 315, "recover_environ": [2, 7, 10, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 324], "recoveri": 315, "red": [242, 243, 245, 246], "redtachyon": 315, "reduc": [315, 320], "ref": 10, "ref_max_scor": [2, 10], "ref_min_scor": [2, 10], "refactor": [315, 320], "refer": [2, 10, 315], "referenc": 315, "regener": 37, "regist": 317, "registr": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "registri": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "reinforc": [12, 14, 15, 25, 29, 30, 32, 37, 41, 42, 54, 314, 320], "rel": 315, "relai": [30, 32], "releas": 11, "relev": [2, 10, 12], "reliabl": 15, "reloc": [30, 51, 52, 53, 315], "relu": [322, 324], "rememb": 322, "remot": [10, 11, 12, 13, 14, 314, 315], "remote_path": 10, "remov": [12, 315], "remove_task_when_complet": [31, 33, 34], "renam": 315, "render": 322, "render_mod": 324, "reorgan": 315, "replac": [15, 30, 320], "replai": [12, 315], "replay_buff": 322, "repositori": [10, 13, 14, 23, 24, 25, 27, 28, 29, 30, 32, 39, 40, 41, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309], "repres": [13, 317, 322], "represent": 315, "reproduc": [2, 10, 12, 30, 37, 322, 324], "reproduct": [30, 315], "req": 315, "requir": [1, 2, 10, 12, 13, 14, 315, 317, 319, 320, 322, 324], "research": 15, "reset": [2, 12, 13, 16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50, 315, 317, 319, 320, 322, 324], "reset_target": [16, 17, 18, 19, 20, 21, 43, 44, 45, 46, 47, 48, 49, 50], "resid": 11, "residu": 315, "respect": [10, 320, 322], "respond": 320, "respons": 12, "rest": 322, "restart": 322, "result": [10, 315, 317, 320], "results_video": 322, "retriev": [10, 12, 315], "return": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 44, 46, 48, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "rew": [2, 5, 12, 315, 320, 324], "rew_matrix": 320, "reward": [3, 5, 6, 12, 13, 15, 16, 17, 18, 19, 20, 21, 25, 29, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 54, 315, 322, 324], "reward_funct": 320, "reward_threshold": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "reward_typ": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53], "rewards_max": 13, "rewards_mean": 13, "rewards_min": 13, "rewards_std": 13, "rewards_sum": 13, "right": [315, 320, 322], "rl": [12, 14, 23, 25, 27, 29, 39, 41, 52, 54, 315, 322, 324], "rl_zoo3": [315, 324], "rm": 322, "rnd": 315, "rnn": 324, "robot": [14, 15, 25, 29, 30, 41, 42, 54, 315, 319, 320, 322], "rodrigo": [12, 14, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 320], "rodrigodelazcano": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 315], "roll": 322, "rollout": 322, "room_siz": [71, 72, 74, 75, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 173, 174, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285], "root": [12, 13], "row": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "rperezvicent": [14, 22, 23, 24, 26, 27, 28, 31, 33, 34, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 320], "rugged": 315, "run": [12, 22, 25, 26, 29, 38, 41, 51, 54, 315, 322], "s_": 322, "s_t": 322, "sac": [15, 16, 17, 18, 19, 20, 21, 311], "safe": 315, "same": [2, 7, 10, 12, 13, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 320, 322], "sampl": [2, 7, 13, 35, 37, 314, 315, 317, 319, 322], "sample_episod": [7, 12, 13, 315], "sampled_episod": 13, "sampler": 322, "samplerwithoutreplac": 322, "save": [4, 13, 315, 317, 319, 320, 322, 324], "save_video": 322, "sb3": 311, "scale": 322, "scale_lb": 322, "scenario": 324, "schedul": [12, 315], "score": [2, 322], "script": [14, 30, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 322, 324], "second": [12, 315], "second_color": [242, 243, 245, 246], "section": [13, 315, 322], "see": [13, 317, 322], "seed": [2, 3, 7, 10, 12, 13, 315, 317, 319, 320, 322, 324], "seen": 320, "select": [16, 17, 18, 19, 20, 25, 29, 41, 42, 54, 315, 320], "select_bi": [221, 222, 224, 225, 227, 228], "self": [2, 3, 4, 5, 7, 8, 319, 320, 324], "separ": 315, "sequenc": [32, 33, 34, 42], "sequenti": 322, "seri": [12, 320], "serial": [13, 315, 318, 321], "serializ": 13, "serialize_custom_spac": 317, "serialize_spac": 317, "serv": 12, "server": [10, 11, 12, 14, 314, 322], "servic": [11, 315], "set": [2, 7, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 315, 320, 322, 324], "set_descript": 322, "set_exploration_typ": 322, "set_se": [7, 12, 322], "set_titl": 322, "set_xlabel": 322, "setpoint": 320, "sever": 13, "shape": [20, 21, 49, 50, 315, 319, 320, 322, 324], "shard": 12, "share": [315, 322], "shift": [13, 322], "should": [2, 317, 319], "show": [12, 314, 315, 317, 319, 322], "shown": [14, 322], "shreyansjainn": 315, "shuffl": 324, "sim": 322, "similarli": [315, 322], "simpl": [12, 315, 320, 322, 324], "simplefilt": 322, "simpli": [317, 320], "sinc": [317, 320, 324], "singl": [3, 6, 9, 10, 12, 14, 315, 322], "size": [8, 10, 12, 14, 314, 315, 320, 322], "skip": [10, 322], "slash": [11, 13], "slice": [7, 8], "slide": [31, 32, 34], "slightli": 315, "slowli": [320, 322], "small": [315, 322], "smaller": [42, 315, 320], "snippet": 12, "so": [12, 13, 320, 322], "soft": 322, "softupd": 322, "solut": 320, "solv": [32, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 320], "solver": 320, "some": [2, 8, 12, 14, 315, 317, 320, 322], "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 315, 317, 319, 320, 321, 322, 324], "space": [2, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 318, 320, 321, 322, 324], "space_dict": 317, "spars": [15, 16, 17, 18, 19, 20, 21, 25, 29, 41, 42, 44, 46, 48, 50, 54], "spec": [2, 7, 10, 13, 14, 315, 317, 322], "specif": [12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 319, 320, 322], "specifi": [2, 7, 8, 10, 12, 13, 315, 322], "speed": [315, 320], "sphinx": 1, "sphinx_github_changelog_token": 315, "sphx": 315, "split": [42, 315], "split_dataset": [10, 12, 315], "split_traj": 322, "squar": 317, "src": 322, "stabil": 320, "stabl": 15, "stable_baselines3": 324, "stack": [6, 13, 315], "stand": [16, 17, 18, 19, 20, 21], "standard": [12, 315, 322], "start": [12, 13, 317, 319, 320, 322, 324], "state": [2, 32, 42, 320, 322], "state_action_valu": 322, "state_to_cel": 320, "state_valu": 322, "statist": 4, "steadi": 320, "step": [2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 317, 319, 320, 322, 324], "step_data": [3, 5, 319, 320], "step_data_callback": [2, 319, 320], "step_data_kei": 5, "stepdata": [3, 5], "stepdatacallback": [2, 13, 315, 318, 321], "stitch": 15, "storag": [8, 10, 12, 13, 315], "store": [2, 8, 10, 12, 13, 315, 319, 322], "str": [2, 5, 8, 9, 10, 11, 13, 317], "straight": [36, 37], "strict": [245, 246], "strictli": 322, "string": [11, 13, 317], "stronger": 320, "structur": [11, 12, 315], "style": [2, 10, 13, 315, 322], "sub": [14, 315], "subcomponent_1": 315, "subcomponent_2": 315, "subdirectori": 13, "subgroup": [315, 320], "subplot": 322, "subsequ": 315, "subset": [315, 318, 321], "subtask": [31, 32, 33, 34], "subtrajectori": [32, 34], "succ": 320, "success": [16, 17, 18, 19, 20, 21, 320, 324], "successfulli": [14, 319], "sudo": 322, "suggest": 315, "sum": 322, "sum_": 320, "summari": [315, 322], "super": [5, 319, 320, 324], "support": [2, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320, 322], "supportsfloat": 2, "suppos": 12, "sure": [14, 315], "surrog": 13, "switch": [31, 32, 33, 34, 315], "sy": 324, "syntax": [2, 10, 13], "synth": [287, 288, 310], "synthloc": [290, 291, 310], "synthseq": [293, 294, 310], "system": 320, "t": [2, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322], "tabl": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315], "tackl": 322, "take": [7, 13, 317, 320], "taken": [6, 8, 43, 44, 45, 46, 47, 48, 49, 50, 319], "tanh": 322, "tanh_loc": 322, "tanhnorm": 322, "target": [16, 17, 18, 19, 20, 21, 30, 31, 32, 33, 34, 42, 54, 320, 322], "target_net_updat": 322, "task": [10, 12, 15, 25, 29, 32, 34, 41, 43, 44, 45, 46, 47, 48, 49, 50, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 320, 322, 324], "tasks_to_complet": [31, 33, 34], "tau": [320, 322], "td": 322, "team": 11, "temperatur": 322, "templat": 315, "tempor": 322, "temporari": [2, 12, 315, 320], "tensor": [322, 324], "tensordict": 322, "tensordictmodul": 322, "termin": [2, 3, 5, 6, 7, 12, 13, 16, 17, 18, 19, 20, 21, 42, 315, 317, 319, 320, 322, 324], "terminate_on_tasks_complet": [31, 33, 34], "test": [10, 11, 12, 15, 315, 319], "text": [13, 35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 315, 320], "than": [10, 12, 16, 17, 18, 19, 20, 21, 315, 322], "thank": 315, "thei": [8, 13, 30, 315, 322], "them": [12, 13, 315, 324], "theme": 320, "theori": 320, "therefor": 322, "theta": 322, "thi": [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "thing": [315, 317], "think": 320, "thorough": 315, "those": 322, "thought": 315, "three": [25, 29, 41, 54, 320, 322], "through": [12, 13, 14, 314, 315, 320, 322], "thu": [42, 320], "tight_layout": 322, "time": [1, 2, 10, 320], "timestep": 315, "to_str": 317, "togeth": [10, 12, 14, 32, 33, 322], "tohsin": 315, "token": [11, 315], "tomekst": 315, "tool": [14, 29, 315], "top": [13, 14], "torch": [322, 324], "torchrl": [321, 325], "total": [7, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 320, 322], "total_episod": [7, 8, 12, 13, 315, 324], "total_step": [7, 8, 12, 13, 315, 320], "total_timestep": 315, "touch": [11, 319], "toward": 320, "towardsdatasci": [15, 42, 320], "tqdm": [322, 324], "train": [15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 29, 38, 41, 51, 54, 311, 312, 319], "trainer": 322, "trajectori": [14, 16, 17, 18, 19, 20, 21, 23, 25, 27, 29, 39, 41, 42, 52, 54, 314, 315, 320], "transform": 322, "transformedenv": 322, "transit": [5, 315, 320, 322], "transition_matrix": 320, "tree": 311, "tri": 322, "true": [2, 7, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320, 322, 324], "truncat": [2, 3, 5, 6, 12, 13, 42, 315, 317, 319, 320, 322, 324], "try": [315, 317, 322], "tune": [14, 23, 25, 27, 29, 39, 41, 52, 54, 311, 312, 320, 322], "tupl": [2, 3, 13, 315, 320, 322], "tutori": [315, 317, 319, 320, 322, 324], "tutorials_jupyt": 321, "tutorials_python": 321, "two": [10, 12, 13, 14, 25, 29, 41, 42, 54, 315, 322, 324], "txt": 1, "type": [2, 12, 13, 25, 29, 41, 54, 315, 317, 322, 324], "typer": 14, "typic": 320, "typing_extens": 315, "typo": 315, "u": [14, 20, 21, 49, 50, 315, 322, 324], "uint8": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 317, 322], "umaz": [15, 42, 315, 320], "unblockpickup": [296, 297, 310], "under": [10, 13, 42, 315, 322], "undiscount": [10, 13], "unflatten": 315, "unifi": 315, "uniform": 320, "union": [7, 317], "uniqu": 317, "unknown": 315, "unless": 2, "unlik": 322, "unlockloc": [299, 300, 302, 303, 310], "unlocklocaldist": [302, 303, 310], "unlockpickup": [305, 306, 308, 309, 310], "unlockpickupdist": [308, 309, 310], "until": [12, 43, 44, 45, 46, 47, 48, 49, 50], "unwrap": 320, "up": [12, 16, 17, 18, 19, 20, 21, 315, 317, 319, 320, 322, 324], "updat": [2, 8, 12, 315, 320, 322], "update_dataset_from_buff": 7, "update_dataset_from_collector_env": 315, "update_episod": 8, "update_episode_metadata": 8, "update_from_storag": 8, "update_metadata": 8, "upgrad": 322, "upload": 315, "upload_namespac": 11, "upon": 15, "upper": 13, "us": [2, 7, 8, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 315, 317, 319, 320, 322, 324], "usag": [14, 315], "user": [2, 12, 13, 315], "usernam": 12, "usual": 322, "util": [10, 12, 314, 322, 324], "v": [2, 10, 13, 14, 32, 322], "v0": [10, 11, 12, 13, 35, 36, 37, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 319, 320, 324], "v1": [10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 51, 52, 53, 54, 315, 322, 324], "v1_1": 324, "v2": [10, 12, 13, 14, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 314, 315, 322], "v3": [42, 43, 44, 45, 46, 47, 48, 49, 50, 315, 319, 320], "v4": [15, 16, 17, 18, 19, 20, 21], "v5": 311, "v_": [320, 322], "v_fn": 320, "valid": [10, 311, 319, 320, 322], "valu": [2, 5, 6, 8, 10, 12, 13, 44, 46, 48, 50, 315, 320, 322], "value_net": 322, "value_network": 322, "valueerror": 8, "valueoper": 322, "vari": [317, 322, 324], "variabl": [10, 12, 13, 315, 320], "varianc": [43, 44, 45, 46, 47, 48, 49, 50, 320], "variat": 320, "varieti": 12, "variou": [32, 33, 317], "ve": 320, "vector_entry_point": [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "veloc": [5, 42, 320], "veri": 12, "version": [2, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 315, 319, 320], "via": [32, 322], "vicent": [43, 44, 45, 46, 47, 48, 49, 50, 320], "video": 322, "video_fold": 322, "viewer_env": 322, "virtual": 322, "virtual_displai": 322, "visibl": 322, "visual": 324, "visualis": 322, "vol": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "wa": [2, 7, 10, 13, 15, 25, 29, 35, 36, 37, 41, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 315, 317], "wai": [12, 320, 322], "wall": [47, 48, 320], "want": [7, 12, 14, 320], "wapoint": 320, "warn": [14, 315, 322], "waypoint": [15, 16, 17, 18, 19, 20, 21, 42, 43, 44, 45, 46, 47, 48, 49, 50], "waypoint_control": 320, "waypoint_target": 320, "waypoint_threshold": 320, "waypointcontrol": 320, "wd": 315, "we": [12, 13, 30, 37, 315, 317, 319, 320, 322, 324], "weight": 322, "well": [12, 13, 14, 314, 315, 320, 322], "were": [10, 12, 14, 25, 29, 30, 32, 41, 42, 54, 315], "what": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 320], "when": [7, 12, 13, 16, 17, 18, 19, 20, 21, 42, 43, 44, 45, 46, 47, 48, 49, 50, 315, 317, 319, 320, 322], "where": [2, 8, 10, 13, 32, 34, 315, 320, 322], "whether": 11, "which": [2, 7, 8, 10, 12, 13, 15, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 314, 315, 319, 320, 322, 324], "while": [11, 12, 315, 317, 319, 320, 322, 324], "who": 322, "whose": 322, "willdudlei": 315, "window": 315, "within": [7, 315, 322], "without": [43, 44, 45, 46, 47, 48, 49, 50, 315], "won": [12, 320], "work": [2, 12, 14, 315, 322], "workflow": 315, "world": 15, "worri": 317, "would": [11, 13, 14, 319, 320], "wrap": [2, 12, 315, 320, 322], "wrapper": [2, 4, 12, 13, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308, 315, 317, 320, 322, 324], "wrapperspec": [56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308], "write": [8, 322], "written": 322, "x": [7, 30, 42, 320, 324], "xvfb": 322, "xy": 320, "y": [14, 30, 42, 320, 322], "yml": 315, "you": [7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 315, 317, 319, 320, 322, 324], "youni": [35, 36, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309], "younik": 315, "younis98": 36, "your": [12, 14, 315, 324], "zero": 320, "zero_grad": [322, 324], "zip": 321, "zoo": 324, "\u898b\u7fd2\u3044": 314}, "titles": ["404 - Page Not Found", "Minari documentation", "DataCollector", "EpisodeBuffer", "EpisodeMetadataCallback", "StepDataCallback", "EpisodeData", "MinariDataset", "MinariStorage", "StepData", "Minari", "Namespace", "Basic Usage", "Dataset Standards", "Minari CLI", "Ant Maze", "Large-Diverse", "Large-Play", "Medium-Diverse", "Medium-Play", "Umaze-Diverse", "Umaze", "Cloned", "Expert", "Human", "Door", "Cloned", "Expert", "Human", "Hammer", "D4RL", "Complete", "Kitchen", "Mixed", "Partial", "Fourrooms-Random", "Fourrooms", "MiniGrid", "Cloned", "Expert", "Human", "Pen", "Point Maze", "Large-Dense", "Large", "Medium-Dense", "Medium", "Open-Dense", "Open", "Umaze-Dense", "Umaze", "Cloned", "Expert", "Human", "Relocate", "BabyAI ActionObjDoor", "Optimal-Fullobs", "Optimal", "BabyAI BlockedUnlockPickup", "Optimal-Fullobs", "Optimal", "BabyAI BossLevel", "Optimal-Fullobs", "Optimal", "BabyAI BossLevelNoUnlock", "Optimal-Fullobs", "Optimal", "BabyAI FindObjS5", "Optimal-Fullobs", "Optimal", "BabyAI FindObjS6", "Optimal-Fullobs", "Optimal", "BabyAI FindObjS7", "Optimal-Fullobs", "Optimal", "BabyAI GoTo", "Optimal-Fullobs", "Optimal", "BabyAI GoToDoor", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocal", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS5N2", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS6N2", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS6N3", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS6N4", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS7N4", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS7N5", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N2", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N3", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N4", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N5", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N6", "Optimal-Fullobs", "Optimal", "BabyAI GoToLocalS8N7", "Optimal-Fullobs", "Optimal", "BabyAI GoToObj", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjDoor", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMaze", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeOpen", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS4", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS4R2", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS5", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS6", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjMazeS7", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjS4", "Optimal-Fullobs", "Optimal", "BabyAI GoToObjS6", "Optimal-Fullobs", "Optimal", "BabyAI GoToOpen", "Optimal-Fullobs", "Optimal", "BabyAI GoToRedBall", "Optimal-Fullobs", "Optimal", "BabyAI GoToRedBallGrey", "Optimal-Fullobs", "Optimal", "BabyAI GoToRedBallNoDists", "Optimal-Fullobs", "Optimal", "BabyAI GoToRedBlueBall", "Optimal-Fullobs", "Optimal", "BabyAI GoToSeq", "Optimal-Fullobs", "Optimal", "BabyAI GoToSeqS5R2", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridor", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS3R1", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS3R2", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS3R3", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS4R3", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS5R3", "Optimal-Fullobs", "Optimal", "BabyAI KeyCorridorS6R3", "Optimal-Fullobs", "Optimal", "BabyAI MoveTwoAcrossS5N2", "Optimal-Fullobs", "Optimal", "BabyAI MoveTwoAcrossS8N9", "Optimal-Fullobs", "Optimal", "BabyAI OneRoomS12", "Optimal-Fullobs", "Optimal", "BabyAI OneRoomS16", "Optimal-Fullobs", "Optimal", "BabyAI OneRoomS20", "Optimal-Fullobs", "Optimal", "BabyAI OneRoomS8", "Optimal-Fullobs", "Optimal", "BabyAI Open", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoor", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorColor", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorDebug", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorLoc", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorsOrderN2", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorsOrderN2Debug", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorsOrderN4", "Optimal-Fullobs", "Optimal", "BabyAI OpenDoorsOrderN4Debug", "Optimal-Fullobs", "Optimal", "BabyAI OpenRedBlueDoors", "Optimal-Fullobs", "Optimal", "BabyAI OpenRedBlueDoorsDebug", "Optimal-Fullobs", "Optimal", "BabyAI OpenRedDoor", "Optimal-Fullobs", "Optimal", "BabyAI OpenTwoDoors", "Optimal-Fullobs", "Optimal", "BabyAI Pickup", "Optimal-Fullobs", "Optimal", "BabyAI PickupAbove", "Optimal-Fullobs", "Optimal", "BabyAI PickupLoc", "Optimal-Fullobs", "Optimal", "BabyAI PutNextLocal", "Optimal-Fullobs", "Optimal", "BabyAI PutNextLocalS5N3", "Optimal-Fullobs", "Optimal", "BabyAI PutNextLocalS6N4", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS4N1", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS5N1", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS5N2", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS6N3", "Optimal-Fullobs", "Optimal", "BabyAI PutNextS7N4", "Optimal-Fullobs", "Optimal", "BabyAI Synth", "Optimal-Fullobs", "Optimal", "BabyAI SynthLoc", "Optimal-Fullobs", "Optimal", "BabyAI SynthSeq", "Optimal-Fullobs", "Optimal", "BabyAI UnblockPickup", "Optimal-Fullobs", "Optimal", "BabyAI UnlockLocal", "Optimal-Fullobs", "Optimal", "BabyAI UnlockLocalDist", "Optimal-Fullobs", "Optimal", "BabyAI UnlockPickup", "Optimal-Fullobs", "Optimal", "BabyAI UnlockPickupDist", "Optimal-Fullobs", "Optimal", "Minigrid", "Expert", "Ant", "MuJoCo", "<no title>", "Release Notes", "Dataset Creation", "Serializing a custom space", "Dataset Creation", "Collecting a subset of a dictionary space with StepDataCallback", "PointMaze D4RL dataset", "Tutorials", "Implicit Q-Learning with TorchRL", "Using Datasets", "Behavioral cloning with PyTorch", "Using Datasets"], "titleterms": {"0": 315, "1": [315, 320], "2": [315, 320], "3": [315, 320], "4": 315, "404": 0, "5": 315, "For": 322, "Not": 0, "The": [0, 322], "action": 13, "actionobjdoor": 55, "adroit": 322, "ant": [15, 312], "attribut": [3, 6, 7, 8, 9], "babyai": [55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307], "basic": 12, "behavior": 324, "blockedunlockpickup": 58, "bosslevel": 61, "bosslevelnounlock": 64, "buffer": 322, "build": [1, 322], "checkpoint": 12, "cli": 14, "clone": [22, 26, 38, 51, 324], "collect": [12, 319, 320], "combin": [10, 12, 14], "complet": 31, "content": [15, 25, 29, 30, 32, 37, 41, 42, 54, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298, 301, 304, 307, 310, 312, 313], "control": 320, "could": 0, "creat": [10, 11, 12, 320], "creation": [316, 318, 321], "custom": 317, "d": 320, "d4rl": [30, 320], "data": [12, 320], "data_collector": 3, "datacollector": 2, "dataset": [8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 316, 318, 320, 321, 323, 324, 325], "defin": 322, "delet": [10, 11, 14], "dens": [43, 45, 47, 49], "deriv": 320, "descript": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "detail": 14, "dictionari": 319, "directori": 13, "divers": [16, 18, 20], "document": 1, "door": 25, "download": [10, 11, 12, 14], "environ": [12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311, 322], "episod": 12, "episodebuff": 3, "episodedata": [6, 13], "episodemetadatacallback": 4, "evalu": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "expert": [23, 27, 39, 52, 311], "filter": 12, "findobjs5": 67, "findobjs6": 70, "findobjs7": 73, "found": 0, "fourroom": [35, 36], "fullob": [56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233, 236, 239, 242, 245, 248, 251, 254, 257, 260, 263, 266, 269, 272, 275, 278, 281, 284, 287, 290, 293, 296, 299, 302, 305, 308], "gener": 324, "get": 11, "goto": 76, "gotodoor": 79, "gotoloc": 82, "gotolocals5n2": 85, "gotolocals6n2": 88, "gotolocals6n3": 91, "gotolocals6n4": 94, "gotolocals7n4": 97, "gotolocals7n5": 100, "gotolocals8n2": 103, "gotolocals8n3": 106, "gotolocals8n4": 109, "gotolocals8n5": 112, "gotolocals8n6": 115, "gotolocals8n7": 118, "gotoobj": 121, "gotoobjdoor": 124, "gotoobjmaz": 127, "gotoobjmazeopen": 130, "gotoobjmazes4": 133, "gotoobjmazes4r2": 136, "gotoobjmazes5": 139, "gotoobjmazes6": 142, "gotoobjmazes7": 145, "gotoobjs4": 148, "gotoobjs6": 151, "gotoopen": 154, "gotoredbal": 157, "gotoredballgrei": 160, "gotoredballnodist": 163, "gotoredbluebal": 166, "gotoseq": 169, "gotoseqs5r2": 172, "hammer": 29, "headless": 322, "human": [24, 28, 40, 53], "i": 320, "implicit": 322, "import": 324, "instal": 12, "integr": 320, "keycorridor": 175, "keycorridors3r1": 178, "keycorridors3r2": 181, "keycorridors3r3": 184, "keycorridors4r3": 187, "keycorridors5r3": 190, "keycorridors6r3": 193, "kitchen": 32, "larg": [16, 17, 43, 44], "learn": 322, "list": [10, 11, 14], "load": [10, 12], "local": [11, 12, 14], "loss": 322, "maze": [15, 42], "medium": [18, 19, 45, 46], "metadata": [11, 13], "method": [2, 3, 4, 5, 7, 8], "minari": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 320], "minari_storag": 8, "minaridataset": 7, "minaristorag": 8, "minigrid": [37, 310], "mix": 33, "model": 322, "modifi": 320, "movetwoacrosss5n2": 196, "movetwoacrosss8n9": 199, "mujoco": 313, "namespac": [11, 12, 13], "normal": 10, "note": 315, "observ": 13, "onerooms12": 202, "onerooms16": 205, "onerooms20": 208, "onerooms8": 211, "open": [47, 48, 214], "opendoor": 217, "opendoorcolor": 220, "opendoordebug": 223, "opendoorloc": 226, "opendoorsordern2": 229, "opendoorsordern2debug": 232, "opendoorsordern4": 235, "opendoorsordern4debug": 238, "openredbluedoor": 241, "openredbluedoorsdebug": 244, "openreddoor": 247, "opentwodoor": 250, "optim": [56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 322], "p": 320, "page": 0, "partial": 34, "pen": [41, 322], "pickup": 253, "pickupabov": 256, "pickuploc": 259, "plai": [17, 19], "planner": 320, "point": 42, "pointmaz": 320, "polici": 324, "pre": 322, "proport": 320, "putnextloc": 262, "putnextlocals5n3": 265, "putnextlocals6n4": 268, "putnexts4n1": 271, "putnexts5n1": 274, "putnexts5n2": 277, "putnexts6n3": 280, "putnexts7n4": 283, "pytorch": 324, "q": 322, "random": 35, "recov": 12, "refer": [15, 25, 29, 30, 32, 37, 41, 42, 54, 320], "releas": 315, "reloc": 54, "replai": 322, "request": 0, "requisit": 322, "result": 322, "sampl": 12, "save": 12, "score": 10, "serial": 317, "show": 14, "space": [13, 317, 319], "spec": [16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 31, 33, 34, 35, 36, 38, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 119, 120, 122, 123, 125, 126, 128, 129, 131, 132, 134, 135, 137, 138, 140, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 173, 174, 176, 177, 179, 180, 182, 183, 185, 186, 188, 189, 191, 192, 194, 195, 197, 198, 200, 201, 203, 204, 206, 207, 209, 210, 212, 213, 215, 216, 218, 219, 221, 222, 224, 225, 227, 228, 230, 231, 233, 234, 236, 237, 239, 240, 242, 243, 245, 246, 248, 249, 251, 252, 254, 255, 257, 258, 260, 261, 263, 264, 266, 267, 269, 270, 272, 273, 275, 276, 278, 279, 281, 282, 284, 285, 287, 288, 290, 291, 293, 294, 296, 297, 299, 300, 302, 303, 305, 306, 308, 309, 311], "split": [10, 12], "standard": 13, "stepdata": 9, "stepdatacallback": [5, 319, 320], "structur": 13, "subset": 319, "support": 13, "synth": 286, "synthloc": 289, "synthseq": 292, "term": 320, "torchrl": 322, "train": [322, 324], "tutori": 321, "umaz": [20, 21, 49, 50], "unblockpickup": 295, "unlockloc": 298, "unlocklocaldist": 301, "unlockpickup": 304, "unlockpickupdist": 307, "updat": 11, "upload": [11, 14], "us": [12, 321, 323, 325], "usag": 12, "v0": 315, "waypoint": 320}})
\ No newline at end of file
diff --git a/main/tutorials/dataset_creation/README/index.html b/main/tutorials/dataset_creation/README/index.html
index 621e2fec..6b37d181 100644
--- a/main/tutorials/dataset_creation/README/index.html
+++ b/main/tutorials/dataset_creation/README/index.html
@@ -13,7 +13,7 @@
 
     
         Dataset Creation - Minari Documentation
-      
+      
     
     
     
diff --git a/main/tutorials/dataset_creation/custom_space_serialization/index.html b/main/tutorials/dataset_creation/custom_space_serialization/index.html
index bcb4afb2..f97fe6bd 100644
--- a/main/tutorials/dataset_creation/custom_space_serialization/index.html
+++ b/main/tutorials/dataset_creation/custom_space_serialization/index.html
@@ -13,7 +13,7 @@
 
     
         Serializing a custom space - Minari Documentation
-      
+      
     
     
     
@@ -822,15 +822,15 @@
 

Let’s start by installing the minigrid library:

pip install minigrid

Then we can import the required modules:

-
import json
-from typing import Dict, Union
+
import json
+from typing import Dict, Union
 
-import gymnasium as gym
-from minigrid.core.mission import MissionSpace
+import gymnasium as gym
+from minigrid.core.mission import MissionSpace
 
-import minari
-from minari import DataCollector
-from minari.serialization import deserialize_space, serialize_space
+import minari
+from minari import DataCollector
+from minari.serialization import deserialize_space, serialize_space
 

First we’ll initialize the MiniGrid Empty environment and take a look at its observation and action space.

@@ -874,7 +874,7 @@ for a custom space we can register 2 new functions that will serialize the space into a JSON object and also deserialize it back into the custom space.

@serialize_space.register(MissionSpace)
-def serialize_custom_space(space: MissionSpace, to_string=True) -> Union[Dict, str]:
+def serialize_custom_space(space: MissionSpace, to_string=True) -> Union[Dict, str]:
     result = {}
     result["type"] = "MissionSpace"
     result["mission_func"] = space.mission_func()
@@ -885,7 +885,7 @@
 
 
 @deserialize_space.register("MissionSpace")
-def deserialize_custom_space(space_dict: Dict) -> MissionSpace:
+def deserialize_custom_space(space_dict: Dict) -> MissionSpace:
     assert space_dict["type"] == "MissionSpace"
     mission_func = lambda: space_dict["mission_func"]  # noqa: E731
 
diff --git a/main/tutorials/dataset_creation/index.html b/main/tutorials/dataset_creation/index.html
index 49e2b3a8..c919b34d 100644
--- a/main/tutorials/dataset_creation/index.html
+++ b/main/tutorials/dataset_creation/index.html
@@ -13,7 +13,7 @@
 
     
         Dataset Creation - Minari Documentation
-      
+      
     
     
     
diff --git a/main/tutorials/dataset_creation/observation_space_subseting/index.html b/main/tutorials/dataset_creation/observation_space_subseting/index.html
index 6ea42326..3163f519 100644
--- a/main/tutorials/dataset_creation/observation_space_subseting/index.html
+++ b/main/tutorials/dataset_creation/observation_space_subseting/index.html
@@ -13,7 +13,7 @@
 
     
         Collecting a subset of a dictionary space with StepDataCallback - Minari Documentation
-      
+      
     
     
     
@@ -825,13 +825,13 @@
 this tutorial, the outlined procedure can be extended to both action/observation spaces
 of any other environment.

Let’s get started by importing the required modules:

-
import gymnasium as gym
-import numpy as np
-from gymnasium import spaces
+
import gymnasium as gym
+import numpy as np
+from gymnasium import spaces
 
-import minari
-from minari import DataCollector
-from minari.data_collector.callbacks import StepDataCallback
+import minari
+from minari import DataCollector
+from minari.data_collector.callbacks import StepDataCallback
 

We’ll first need to initialize our PointMaze_UMaze environment and find @@ -864,8 +864,8 @@ ) -class CustomSubsetStepDataCallback(StepDataCallback): - def __call__(self, env, **kwargs): +class CustomSubsetStepDataCallback(StepDataCallback): + def __call__(self, env, **kwargs): step_data = super().__call__(env, **kwargs) del step_data["observation"]["achieved_goal"] return step_data diff --git a/main/tutorials/dataset_creation/point_maze_dataset/index.html b/main/tutorials/dataset_creation/point_maze_dataset/index.html index 5563b917..c50668ed 100644 --- a/main/tutorials/dataset_creation/point_maze_dataset/index.html +++ b/main/tutorials/dataset_creation/point_maze_dataset/index.html @@ -13,7 +13,7 @@ PointMaze D4RL dataset - Minari Documentation - + @@ -830,10 +830,11 @@ Another important factor to take into account is that the environment is continuing, which means that it won’t be terminated when reaching a goal. Instead a new goal target will be randomly selected and the agent will start from the location it’s currently at (no env.reset() required).

Lets start by importing the required modules for this tutorial:

-
import gymnasium as gym
-import numpy as np
+
import gymnasium as gym
+import gymnasium_robotics  # noqa: F401
+import numpy as np
 
-from minari import DataCollector, StepDataCallback
+from minari import DataCollector, StepDataCallback
 
@@ -872,20 +873,20 @@

WayPoint PlannerEXPLORATION_ACTIONS = {UP: (0, 1), DOWN: (0, -1), LEFT: (-1, 0), RIGHT: (1, 0)} -class QIteration: +class QIteration: """Solves for optimal policy with Q-Value Iteration. Inspired by https://github.com/Farama-Foundation/D4RL/blob/master/d4rl/pointmaze/q_iteration.py """ - def __init__(self, maze): + def __init__(self, maze): self.maze = maze self.num_states = maze.map_length * maze.map_width self.num_actions = len(EXPLORATION_ACTIONS.keys()) self.rew_matrix = np.zeros((self.num_states, self.num_actions)) self.compute_transition_matrix() - def generate_path(self, current_cell, goal_cell): + def generate_path(self, current_cell, goal_cell): self.compute_reward_matrix(goal_cell) q_values = self.get_q_values() current_state = self.cell_to_state(current_cell) @@ -904,28 +905,28 @@

WayPoint Plannerreturn waypoints - def reward_function(self, desired_cell, current_cell): + def reward_function(self, desired_cell, current_cell): if desired_cell == current_cell: return 1.0 else: return 0.0 - def state_to_cell(self, state): + def state_to_cell(self, state): i = int(state / self.maze.map_width) j = state % self.maze.map_width return (i, j) - def cell_to_state(self, cell): + def cell_to_state(self, cell): return cell[0] * self.maze.map_width + cell[1] - def get_q_values(self, num_itrs=50, discount=0.99): + def get_q_values(self, num_itrs=50, discount=0.99): q_fn = np.zeros((self.num_states, self.num_actions)) for _ in range(num_itrs): v_fn = np.max(q_fn, axis=1) q_fn = self.rew_matrix + discount * self.transition_matrix.dot(v_fn) return q_fn - def compute_reward_matrix(self, goal_cell): + def compute_reward_matrix(self, goal_cell): for state in range(self.num_states): for action in range(self.num_actions): next_state, _ = self.get_next_state(state, EXPLORATION_ACTIONS[action]) @@ -934,7 +935,7 @@

WayPoint Plannergoal_cell, next_cell ) - def compute_transition_matrix(self): + def compute_transition_matrix(self): """Constructs this environment's transition matrix. Returns: A dS x dA x dS array where the entry transition_matrix[s, a, ns] @@ -950,7 +951,7 @@

WayPoint Plannerif valid: self.transition_matrix[state, action_idx, next_state] = 1 - def get_next_state(self, state, action): + def get_next_state(self, state, action): cell = self.state_to_cell(state) next_cell = tuple(map(lambda i, j: int(i + j), cell, action)) @@ -958,7 +959,7 @@

WayPoint Plannerreturn next_state, self._check_valid_cell(next_cell) - def _check_valid_cell(self, cell): + def _check_valid_cell(self, cell): # Out of map bounds if cell[0] >= self.maze.map_length: return False @@ -1038,13 +1039,13 @@

3. Integral Term (I)\(x\) and \(y\) coordinates to add more variance in the trajectories generated for the offline dataset.

-
class WaypointController:
+
class WaypointController:
     """Agent controller to follow waypoints in the maze.
 
     Inspired by https://github.com/Farama-Foundation/D4RL/blob/master/d4rl/pointmaze/waypoint_controller.py
     """
 
-    def __init__(self, maze, gains={"p": 10.0, "d": -1.0}, waypoint_threshold=0.1):
+    def __init__(self, maze, gains={"p": 10.0, "d": -1.0}, waypoint_threshold=0.1):
         self.global_target_xy = np.empty(2)
         self.maze = maze
 
@@ -1054,7 +1055,7 @@ 

3. Integral Term (I)self.waypoint_threshold = waypoint_threshold self.waypoint_targets = None - def compute_action(self, obs): + def compute_action(self, obs): # Check if we need to generate new waypoint path due to change in global target if ( np.linalg.norm(self.global_target_xy - obs["desired_goal"]) > 1e-3 @@ -1129,7 +1130,7 @@

Modified StepDataCallbacksuccess=True in the 'infos' item.

In the minari.StepDataCallback we can add new keys to infos that we would also want to save in our Minari dataset. For example in this case we will be generating new hdf5 datasets qpos, qvel, and goal in the infos subgroup of each episode group.

-
class PointMazeStepDataCallback(StepDataCallback):
+
class PointMazeStepDataCallback(StepDataCallback):
     """Add environment state information to 'infos'.
 
     Also, since the environment generates a new target every time it reaches a goal, the environment is
@@ -1137,7 +1138,7 @@ 

Modified StepDataCallback returns a True 'succes' key in 'infos'. This way we can divide the Minari dataset into different trajectories. """ - def __call__( + def __call__( self, env, obs, info, action=None, rew=None, terminated=None, truncated=None ): qpos = obs["observation"][:2] @@ -1180,7 +1181,7 @@

Collect Data and Create Minari Datasetobs, _ = collector_env.reset(seed=123) -waypoint_controller = WaypointController(maze=env.maze) +waypoint_controller = WaypointController(maze=env.unwrapped.maze) for n_step in range(int(total_steps)): action = waypoint_controller.compute_action(obs) diff --git a/main/tutorials/index.html b/main/tutorials/index.html index c0c8464d..a87fbff9 100644 --- a/main/tutorials/index.html +++ b/main/tutorials/index.html @@ -13,7 +13,7 @@ Tutorials - Minari Documentation - + diff --git a/main/tutorials/using_datasets/IQL_torchrl/index.html b/main/tutorials/using_datasets/IQL_torchrl/index.html index be01f1f7..c5f99600 100644 --- a/main/tutorials/using_datasets/IQL_torchrl/index.html +++ b/main/tutorials/using_datasets/IQL_torchrl/index.html @@ -13,7 +13,7 @@ Implicit Q-Learning with TorchRL - Minari Documentation - + @@ -833,12 +833,12 @@

Pre-requisitesPyTorch nightly. Remember to add the “-U” flag to upgrade torch if it’s already installed.

To confirm that everything is installed properly we import the required modules:

-
import warnings
-import matplotlib.pyplot as plt
-import numpy as np
-import gymnasium
-import torch
-import torchrl
+
import warnings
+import matplotlib.pyplot as plt
+import numpy as np
+import gymnasium
+import torch
+import torchrl
 
 seed = 42
 torch.manual_seed(seed)
@@ -858,7 +858,7 @@ 

For headless environments
from pyvirtualdisplay import Display
+
from pyvirtualdisplay import Display
 
 virtual_display = Display(visible=0, size=(1400, 900))
 virtual_display.start()
@@ -867,8 +867,8 @@ 

For headless environments

The Adroit Pen environment

-
from torchrl.envs.libs.gym import GymEnv
-from torchrl.envs import DoubleToFloat, TransformedEnv
+
from torchrl.envs.libs.gym import GymEnv
+from torchrl.envs import DoubleToFloat, TransformedEnv
 

We will be using the AdroitHandPen environment from Gymnasium-Robotics. TorchRL is designed to be agnostic to different frameworks, so instead of working with a Gymnasium environment directly we load it using the GymEnv wrapper:

@@ -925,8 +925,8 @@

The Adroit Pen environment

Building a replay buffer

The Minari dataset we will be using is D4RL/pen/human-v2, which consists of 25 human demonstrations. We can create a replay buffer using MinariExperienceReplay():

-
from torchrl.data.datasets.minari_data import MinariExperienceReplay
-from torchrl.data.replay_buffers import SamplerWithoutReplacement
+
from torchrl.data.datasets.minari_data import MinariExperienceReplay
+from torchrl.data.replay_buffers import SamplerWithoutReplacement
 
 dataset_id = "D4RL/pen/human-v2"
 batch_size = 256
@@ -987,12 +987,12 @@ 

Implicit Q-Learning

Defining the model

-
from tensordict.nn import TensorDictModule
-from tensordict.nn.distributions import NormalParamExtractor
-from torchrl.envs.utils import ExplorationType, set_exploration_type
-from torchrl.modules import MLP, ProbabilisticActor, TanhNormal, ValueOperator
-from torchrl.objectives import IQLLoss, SoftUpdate
-from torchrl.trainers.helpers.models import ACTIVATIONS
+
from tensordict.nn import TensorDictModule
+from tensordict.nn.distributions import NormalParamExtractor
+from torchrl.envs.utils import ExplorationType, set_exploration_type
+from torchrl.modules import MLP, ProbabilisticActor, TanhNormal, ValueOperator
+from torchrl.objectives import IQLLoss, SoftUpdate
+from torchrl.trainers.helpers.models import ACTIVATIONS
 

We first initialise the value network \(V_\psi(s)\) which estimates the expectile of the value of a state \(s\) with respect to the distribution of actions in the dataset. TorchRL provides a MLP convenience class which we use to build a two layer Multi-Layer Perceptron. To plug this MLP into the rest of the network, we specify that the inputs are read from the "observation" and "action" keys of the input tensordict (and concatenated, by default), and the output of the MLP is written to the "state_value" key:

@@ -1110,7 +1110,7 @@

Loss and optimizer

To demonstrate training, we run IQL for 50,000 iterations. During training, we will evaluate the policy every 1000 iterations. But note that this is for evaluation purposes only. Unlike online RL, we do not collect new data during training.

@torch.no_grad()
-def evaluate_policy(env, policy, num_eval_episodes=20):
+def evaluate_policy(env, policy, num_eval_episodes=20):
     """Calculate the mean cumulative reward over multiple episodes."""
     episode_rewards = []
 
@@ -1127,7 +1127,7 @@ 

Training
  • Compute the loss \(\ell = L_V(\psi) + L_Q(\theta) + L_\pi(\phi)\).

  • Backpropagate the gradients and update the networks, including the target Q-network.

  • -

    Results

    -
    from IPython.display import HTML
    -from gymnasium.utils.save_video import save_video
    -from base64 import b64encode
    +
    from IPython.display import HTML
    +from gymnasium.utils.save_video import save_video
    +from base64 import b64encode
     

    Evaluated over 100 episodes, the final performance is:

    diff --git a/main/tutorials/using_datasets/README/index.html b/main/tutorials/using_datasets/README/index.html index 39e31647..53c0f2d4 100644 --- a/main/tutorials/using_datasets/README/index.html +++ b/main/tutorials/using_datasets/README/index.html @@ -13,7 +13,7 @@ Using Datasets - Minari Documentation - + diff --git a/main/tutorials/using_datasets/behavioral_cloning/index.html b/main/tutorials/using_datasets/behavioral_cloning/index.html index 017336be..3b5d2494 100644 --- a/main/tutorials/using_datasets/behavioral_cloning/index.html +++ b/main/tutorials/using_datasets/behavioral_cloning/index.html @@ -13,7 +13,7 @@ Behavioral cloning with PyTorch - Minari Documentation - + @@ -821,22 +821,22 @@

    Imports

    For this tutorial you will need the RL Baselines3 Zoo library, which you can install with pip install rl_zoo3. Let’s then import all the required packages and set the random seed for reproducibility:

    -
    import os
    -import sys
    +
    import os
    +import sys
     
    -import gymnasium as gym
    -import numpy as np
    -import torch
    -import torch.nn as nn
    -import torch.nn.functional as F
    -from gymnasium import spaces
    -from rl_zoo3.train import train
    -from stable_baselines3 import PPO
    -from torch.utils.data import DataLoader
    -from tqdm.auto import tqdm
    +import gymnasium as gym
    +import numpy as np
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +from gymnasium import spaces
    +from rl_zoo3.train import train
    +from stable_baselines3 import PPO
    +from torch.utils.data import DataLoader
    +from tqdm.auto import tqdm
     
    -import minari
    -from minari import DataCollector
    +import minari
    +from minari import DataCollector
     
     
     torch.manual_seed(42)
    @@ -885,14 +885,14 @@ 

    Dataset generation

    Now we can use PyTorch to learn the policy from the offline dataset. Let’s define the policy network:

    -
    class PolicyNetwork(nn.Module):
    -    def __init__(self, input_dim, output_dim):
    +
    class PolicyNetwork(nn.Module):
    +    def __init__(self, input_dim, output_dim):
             super().__init__()
             self.fc1 = nn.Linear(input_dim, 256)
             self.fc2 = nn.Linear(256, 128)
             self.fc3 = nn.Linear(128, output_dim)
     
    -    def forward(self, x):
    +    def forward(self, x):
             x = torch.relu(self.fc1(x))
             x = torch.relu(self.fc2(x))
             x = self.fc3(x)
    @@ -903,7 +903,7 @@ 

    Behavioral cloning with PyTorchMinariDataset is compatible with the PyTorch Dataset API, allowing us to load it directly using PyTorch DataLoader. However, since each episode can have a varying length, we need to pad them. To achieve this, we can utilize the collate_fn feature of PyTorch DataLoader. Let’s create the collate_fn function:

    -
    def collate_fn(batch):
    +
    def collate_fn(batch):
         return {
             "id": torch.Tensor([x.id for x in batch]),
             "observations": torch.nn.utils.rnn.pad_sequence(
    diff --git a/main/tutorials/using_datasets/index.html b/main/tutorials/using_datasets/index.html
    index 8bbbc561..7eff5ac0 100644
    --- a/main/tutorials/using_datasets/index.html
    +++ b/main/tutorials/using_datasets/index.html
    @@ -13,7 +13,7 @@
     
         
             Using Datasets - Minari Documentation
    -      
    +