-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrigger.py
213 lines (179 loc) · 7.69 KB
/
trigger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import time
import json
from pprint import pprint
import numpy as np
from six.moves import xrange
import tensorflow as tf
import data_utils
import seq2seq_model
mode = 'test'
train_enc = 'data/train.enc'
train_dec = 'data/train.dec'
working_directory = 'checkpoint/'
enc_vocab_size = 20000
dec_vocab_size = 20000
num_layers = 3
layer_size = 256
max_train_data_size = 0
batch_size = 64
steps_per_checkpoint = 1000
learning_rate = 0.5
learning_rate_decay_factor = 0.99
max_gradient_norm = 5.0
lines = []
try:
reload
except NameError:
pass
else:
reload(sys).setdefaultencoding('utf-8')
_buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
def read_data(source_path, target_path, max_size=None):
data_set = [[] for _ in _buckets]
with tf.gfile.GFile(source_path, mode="r") as source_file:
with tf.gfile.GFile(target_path, mode="r") as target_file:
source, target = source_file.readline(), target_file.readline()
counter = 0
while source and target and (not max_size or counter < max_size):
counter += 1
if counter % 100000 == 0:
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
target_ids.append(data_utils.EOS_ID)
for bucket_id, (source_size, target_size) in enumerate(_buckets):
if len(source_ids) < source_size and len(target_ids) < target_size:
data_set[bucket_id].append([source_ids, target_ids])
break
source, target = source_file.readline(), target_file.readline()
return data_set
def create_model(session, forward_only):
#Create model and initialize or load parameters
model = seq2seq_model.Seq2SeqModel( enc_vocab_size, dec_vocab_size, _buckets, layer_size, num_layers, max_gradient_norm, batch_size, learning_rate, learning_rate_decay_factor, forward_only=forward_only)
ckpt = tf.train.get_checkpoint_state(working_directory)
checkpoint_suffix = ""
if tf.__version__ > "0.12":
checkpoint_suffix = ".index"
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path + checkpoint_suffix):
print("Model detected at %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Creating a new model.")
session.run(tf.global_variables_initializer())
return model
def train():
# prepare dataset
print("Starting to train from " + working_directory)
enc_train, dec_train, _, _ = data_utils.prepare_custom_data(working_directory,train_enc,train_dec,enc_vocab_size,dec_vocab_size)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.666)
config = tf.ConfigProto(gpu_options=gpu_options)
config.gpu_options.allocator_type = 'BFC'
with tf.Session(config=config) as sess:
print("Creating model with %d layers and %d cells." % (num_layers, layer_size))
model = create_model(sess, False)
train_set = read_data(enc_train, dec_train, max_train_data_size)
train_bucket_sizes = [len(train_set[b]) for b in xrange(len(_buckets))]
train_total_size = float(sum(train_bucket_sizes))
train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in xrange(len(train_bucket_sizes))]
step_time, loss = 0.0, 0.0
current_step = 0
previous_losses = []
count = 0
while True:
count += 1
print('Step: ' + str(count))
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale))
if train_buckets_scale[i] > random_number_01])
start_time = time.time()
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
train_set, bucket_id)
_, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, False)
step_time += (time.time() - start_time) / steps_per_checkpoint
loss += step_loss / steps_per_checkpoint
current_step += 1
if current_step % steps_per_checkpoint == 0:
perplexity = math.exp(loss) if loss < 300 else float('inf')
print ("Saved model at step %d with perplexity %.2f "
% (model.global_step.eval(),
perplexity))
if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):
sess.run(model.learning_rate_decay_op)
previous_losses.append(loss)
checkpoint_path = os.path.join(working_directory, "seq2seq.ckpt")
model.saver.save(sess, checkpoint_path, global_step=model.global_step)
step_time, loss = 0.0, 0.0
sys.stdout.flush()
def decode():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)
config = tf.ConfigProto(gpu_options=gpu_options)
with tf.Session(config=config) as sess:
model = create_model(sess, True)
model.batch_size = 1
enc_vocab_path = os.path.join(working_directory,"vocab%d.enc" % enc_vocab_size)
dec_vocab_path = os.path.join(working_directory,"vocab%d.dec" % dec_vocab_size)
enc_vocab, _ = data_utils.initialize_vocabulary(enc_vocab_path)
_, rev_dec_vocab = data_utils.initialize_vocabulary(dec_vocab_path)
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), enc_vocab)
bucket_id = min([b for b in xrange(len(_buckets))
if _buckets[b][0] > len(token_ids)])
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
if sentence[:-1] in lines:
temp_output = " ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs])
trigger_check = trigger_activator(temp_output)
if trigger_check == True:
print(" ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs[:-1]]))
else:
print(temp_output)
else:
print('i dont understand you')
print("> ", end="")
sys.stdout.flush()
sentence = sys.stdin.readline()
#Check if there is a trigger in the decoded sentence
def trigger_activator(decoded_output):
if "_trigger" in decoded_output:
trigger_value = decoded_output.split(' ')[-1:]
trigger_words = decoded_output.split(' ')
trigger_value = str(trigger_value).replace("'","").replace("]","").replace("[","")
for x in range(0, len(data['triggers'])):
if data['triggers'][x]['id'] == str(trigger_value):
json_words = data['triggers'][x]['keywords']
if json_words[0] in decoded_output:
if json_words[1] in decoded_output:
if str(trigger_value) == "_trigger1":
print('Your action here!!')
return True
if __name__ == '__main__':
print('Starting the script...')
if mode == 'train':
train()
else:
#Load the trigger file
with open('tirgger.json') as data_file:
data = json.load(data_file)
#Reply only to the trained inputs
'''input_file = open('data/train.enc', 'rw')
for line in input_file:
lines.append(line.lower().replace('\n','').replace('\r',''))'''
decode()