forked from singhgautam/steve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
43 lines (35 loc) · 1.33 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import glob
import torch
from PIL import Image, ImageFile
from torchvision import transforms
from torch.utils.data import Dataset
ImageFile.LOAD_TRUNCATED_IMAGES = True
class GlobVideoDataset(Dataset):
def __init__(self, root, img_size, ep_len=3, img_glob='*.png'):
self.root = root
self.img_size = img_size
self.total_dirs = sorted(glob.glob(root))
self.ep_len = ep_len
# chunk into episodes
self.episodes = []
for dir in self.total_dirs:
frame_buffer = []
image_paths = sorted(glob.glob(os.path.join(dir, img_glob)), key=lambda x: int(os.path.split(x)[-1][:-4]))
for path in image_paths:
frame_buffer.append(path)
if len(frame_buffer) == self.ep_len:
self.episodes.append(frame_buffer)
frame_buffer = []
self.transform = transforms.ToTensor()
def __len__(self):
return len(self.episodes)
def __getitem__(self, idx):
video = []
for img_loc in self.episodes[idx]:
image = Image.open(img_loc).convert("RGB")
image = image.resize((self.img_size, self.img_size))
tensor_image = self.transform(image)
video += [tensor_image]
video = torch.stack(video, dim=0)
return video