-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhttp_llava.py
104 lines (90 loc) · 3.96 KB
/
http_llava.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
Usage:
python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000
python3 test_httpserver_llava.py
Output:
The image features a man standing on the back of a yellow taxi cab, holding
"""
import argparse
import asyncio
import json
import time
import aiohttp
import requests
from llava.conversation import (
default_conversation,
conv_templates,
SeparatorStyle,
conv_llava_llama_3,
conv_qwen,
)
# installing latest llava-next: pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
async def send_request(url, data, delay=0):
await asyncio.sleep(delay)
async with aiohttp.ClientSession() as session:
async with session.post(url, json=data) as resp:
output = await resp.json()
return output
async def test_concurrent(args):
url = f"{args.host}:{args.port}"
response = []
for i in range(1):
response.append(
send_request(
url + "/generate",
{
"text": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nPlease generate caption towards this image.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
"image_data": "/mnt/bn/vl-research/workspace/boli01/projects/demos/sglang_codebase/examples/quick_start/images/cat.jpeg",
"sampling_params": {
"max_new_tokens": 1024,
"temperature": 0,
"top_p": 1.0,
"presence_penalty": 2,
"frequency_penalty": 2,
"stop": "<|eot_id|>",
},
},
)
)
rets = await asyncio.gather(*response)
for ret in rets:
print(ret["text"])
def test_streaming(args):
url = f"{args.host}:{args.port}"
pload = {
"text": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nPlease generate caption towards this image.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
"sampling_params": {
"max_new_tokens": 1024,
"temperature": 0,
"top_p": 1.0,
"presence_penalty": 2,
"frequency_penalty": 2,
"stop": "<|eot_id|>",
},
"image_data": "/mnt/bn/vl-research/workspace/boli01/projects/demos/sglang_codebase/examples/quick_start/images/cat.jpeg",
"stream": True,
}
response = requests.post(
url + "/generate",
json=pload,
stream=True,
)
prev = 0
for chunk in response.iter_lines(decode_unicode=False):
chunk = chunk.decode("utf-8")
if chunk and chunk.startswith("data:"):
if chunk == "data: [DONE]":
break
data = json.loads(chunk[5:].strip("\n"))
output = data["text"].strip()
print(output[prev:], end="", flush=True)
prev = len(output)
print("")
# CUDA_VISIBLE_DEVICES=0,1,2,3 python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --tokenizer-path lmms-lab/llama3-llava-next-8b-tokenizer --port=30000 --host="127.0.0.1" --tp-size=4
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="http://127.0.0.1")
parser.add_argument("--port", type=int, default=30000)
args = parser.parse_args()
asyncio.run(test_concurrent(args))
test_streaming(args)