-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimagenet.prototxt
224 lines (223 loc) · 3.2 KB
/
imagenet.prototxt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# This file is for the net_surgery.ipynb example notebook.
name: "CaffeNetConv"
layers {
name: "data"
type: HDF5_DATA
top: "data"
top: "label"
hdf5_data_param {
source: "/home/ecater/Desktop/caffe/examples/science_bowl/data/aug_train.txt"
batch_size: 128
}
include: { phase: TRAIN }
}
layers {
name: "data"
type: HDF5_DATA
top: "data"
top: "label"
hdf5_data_param {
source: "/home/ecater/Desktop/caffe/examples/science_bowl/data/aug_test.txt"
batch_size: 128
}
include: { phase: TEST }
}
layers {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {
num_output: 96
kernel_size: 5
stride: 4
}
}
layers {
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers {
name: "pool1"
type: POOLING
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 3
alpha: 0.0001
beta: 0.75
}
}
layers {
name: "conv2"
type: CONVOLUTION
bottom: "norm1"
top: "conv2"
convolution_param {
num_output: 256
pad: 2
kernel_size: 3
group: 2
}
}
layers {
name: "relu2"
type: RELU
bottom: "conv2"
top: "conv2"
}
layers {
name: "pool2"
type: POOLING
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "norm2"
type: LRN
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 3
alpha: 0.0001
beta: 0.75
}
}
layers {
name: "conv3"
type: CONVOLUTION
bottom: "norm2"
top: "conv3"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layers {
name: "relu3"
type: RELU
bottom: "conv3"
top: "conv3"
}
layers {
name: "conv5"
type: CONVOLUTION
bottom: "conv3"
top: "conv5"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
}
}
layers {
name: "relu5"
type: RELU
bottom: "conv5"
top: "conv5"
}
layers {
name: "pool5"
type: POOLING
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layers {
name: "fc6-conv"
type: CONVOLUTION
bottom: "pool5"
top: "fc6-conv"
convolution_param {
num_output: 4096
kernel_size: 1
}
}
layers {
name: "relu6"
type: RELU
bottom: "fc6-conv"
top: "fc6-conv"
}
layers {
name: "drop6"
type: DROPOUT
bottom: "fc6-conv"
top: "fc6-conv"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc7-conv"
type: CONVOLUTION
bottom: "fc6-conv"
top: "fc7-conv"
convolution_param {
num_output: 4096
kernel_size: 1
}
}
layers {
name: "relu7"
type: RELU
bottom: "fc7-conv"
top: "fc7-conv"
}
layers {
name: "drop7"
type: DROPOUT
bottom: "fc7-conv"
top: "fc7-conv"
dropout_param {
dropout_ratio: 0.5
}
}
layers {
name: "fc8-conv"
type: CONVOLUTION
bottom: "fc7-conv"
top: "fc8-conv"
convolution_param {
num_output: 121
kernel_size: 1
}
}
layers {
name: "accuracy"
type: ACCURACY
bottom: "fc8-conv"
bottom: "label"
top: "accuracy"
include: { phase: TEST }
}
layers {
name: "prob"
type: SOFTMAX
bottom: "fc8-conv"
top: "prob"
}