This repository has been archived by the owner on Sep 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathshufa_category.py
257 lines (204 loc) · 9.59 KB
/
shufa_category.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# -*- encoding: utf-8 -*-
__author__ = 'Euphoria'
import os
import sys
import argparse
import time
from PIL import Image
import numpy as np
import torch
from torch import nn
from torch.utils.data import TensorDataset, DataLoader, Dataset
from torchvision import transforms
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from model.discriminators import Discriminator
inv_writer_dict = {
'智永': 0, ' 隸書-趙之謙': 1, '張即之': 2, '張猛龍碑': 3, '柳公權': 4, '標楷體-手寫': 5, '歐陽詢-九成宮': 6,
'歐陽詢-皇甫誕': 7, '沈尹默': 8, '美工-崩雲體': 9, '美工-瘦顏體': 10, '虞世南': 11, '行書-傅山': 12, '行書-王壯為': 13,
'行書-王鐸': 14, '行書-米芾': 15, '行書-趙孟頫': 16, '行書-鄭板橋': 17, '行書-集字聖教序': 18, '褚遂良': 19, '趙之謙': 20,
'趙孟頫三門記體': 21, '隸書-伊秉綬': 22, '隸書-何紹基': 23, '隸書-鄧石如': 24, '隸書-金農': 25, '顏真卿-顏勤禮碑': 26,
'顏真卿多寶塔體': 27, '魏碑': 28
}
writer_dict = {v: k for k, v in inv_writer_dict.items()}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--action', choices=['train', 'eval'])
parser.add_argument('--image_size', type=int, default=256, help="size of your input images")
parser.add_argument('--embedding_num', type=int, default=30, help="number for distinct embeddings")
parser.add_argument('--batch_size', type=int, default=32, help='number of examples in batch')
parser.add_argument('--input_nc', type=int, default=1)
parser.add_argument('--input_path', type=str, required=True)
# train
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--save_path', type=str, default='output')
# eval
parser.add_argument('--ckpt_path', type=str, default='output/category.pth')
args = parser.parse_args()
return args
def collate_fn_val(batch):
total_img = []
for img_path in batch:
img = Image.open(img_path).convert('L').resize((args.image_size, args.image_size), Image.BICUBIC)
img = transforms.ToTensor()(img)
img = transforms.Normalize(0.5, 0.5)(img)
img = img.unsqueeze(dim=0)
total_img.append(img)
total_img = torch.cat(total_img, dim=0)
return total_img
def collate_fn_train(batch):
total_img = []
total_font = []
for img_path, font in batch:
img = Image.open(img_path).convert('L').resize((args.image_size, args.image_size), Image.BICUBIC)
img = transforms.ToTensor()(img)
img = transforms.Normalize(0.5, 0.5)(img)
img = img.unsqueeze(dim=0)
total_img.append(img)
total_font.append(font)
total_img = torch.cat(total_img, dim=0)
total_font = torch.LongTensor(total_font)
return total_img, total_font
class ImgDataset(Dataset):
def __init__(self, img_list, label_list=None):
super(ImgDataset).__init__()
self.img_list = img_list
if label_list is not None:
self.label_list = label_list
assert len(img_list) == len(label_list)
else:
self.label_list = None
def __getitem__(self, index):
if self.label_list is not None:
return self.img_list[index], self.label_list[index]
else:
return self.img_list[index]
def __len__(self):
return len(self.img_list)
def load_val_dataloader(args):
IMG_EXT = {'.jpg', '.png', '.tif', '.tiff'}
raw_img_list = []
for root, dirs, files in os.walk(args.input_path):
for file in files:
if os.path.splitext(file)[-1].lower() in IMG_EXT:
raw_img_list.append(os.path.join(root, file))
img_list = raw_img_list
# img_list = torch.repeat_interleave(img_list, repeats=2, dim=1)
img_dataset = ImgDataset(img_list)
img_dataloader = DataLoader(img_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn_val)
return raw_img_list, img_dataloader
def eval(args):
font_names = [s.strip() for s in open(args.type_file, encoding='utf-8').readlines()]
font_map = {idx: font for idx, font in enumerate(font_names)}
model = Discriminator(input_nc=args.input_nc, embedding_num=args.embedding_num)
model_ckpt = torch.load(os.path.join(args.ckpt_path))
model.load_state_dict(model_ckpt)
print('load model {}'.format(args.ckpt_path))
model.to('cuda')
raw_image_list, img_dataloader = load_val_dataloader(args)
total_category = []
for batch in img_dataloader:
img = batch
img = img.to('cuda')
_, catagory_logits = model(img)
catagory_logits = catagory_logits.detach().cpu()
catagory_idx = torch.argmax(catagory_logits, dim=-1)
catagory_idx = catagory_idx.numpy().tolist()
total_category.extend(catagory_idx)
for img, catagory_idx in zip(raw_image_list, total_category):
print('{}: {}'.format(img, font_map[catagory_idx]))
def load_train_dataloader(args, inv_font_map):
IMG_EXT = {'.jpg', '.png', '.tif', '.tiff'}
raw_img_list = []
raw_label_list = []
for root, dirs, files in os.walk(args.input_path):
for file in files:
if os.path.splitext(file)[-1].lower() in IMG_EXT:
raw_img_list.append(os.path.join(root, file))
raw_label_list.append(file.split('~')[1])
img_list = [img_path for img_path in raw_img_list]
label_list = [inv_font_map[font_name] for font_name in raw_label_list]
img_train, img_val, label_train, label_val = train_test_split(img_list, label_list, test_size=0.1, random_state=777)
print('get {} train examples, {} val examples.'.format(len(img_train), len(img_val)))
# img_train = torch.cat(img_train, dim=0)
# label_train = torch.LongTensor(label_train)
train_dataset = ImgDataset(img_train, label_train)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn_train)
# img_val = torch.cat(img_val, dim=0)
# label_val = torch.LongTensor(label_val)
val_dataset = ImgDataset(img_val, label_val)
val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn_train)
return train_dataloader, val_dataloader
def train(args):
font_map = writer_dict
inv_font_map = inv_writer_dict
if not os.path.isdir(args.save_path):
os.makedirs(args.save_path)
model = Discriminator(input_nc=args.input_nc, embedding_num=args.embedding_num)
if args.resume is not None:
model_ckpt = torch.load(args.resume)
try:
model.load_state_dict(model_ckpt)
except RuntimeError:
print('Guess resume from raw discriminator ckpt. Try pop model.0.weight.')
model_ckpt.pop('model.0.weight')
try:
model.load_state_dict(model_ckpt, strict=False)
except RuntimeError:
print('Guess resume ckpt and your model have different catagories. Try pop catagory parameters.')
model_ckpt.pop('catagory.weight')
model_ckpt.pop('catagory.bias')
model.load_state_dict(model_ckpt, strict=False)
print('load model {}'.format(args.resume), flush=True)
model.to('cuda')
optimizer = torch.optim.AdamW(params=model.parameters(), lr=args.lr)
train_dataloader, val_dataloader = load_train_dataloader(args, inv_font_map)
best_acc = 0
best_f1 = 0
loss_criterion = nn.CrossEntropyLoss()
for epoch_idx in range(args.epoch):
losses = []
for batch_idx, batch in enumerate(train_dataloader):
img, label = batch
img = img.to('cuda')
label = label.to('cuda')
model.zero_grad()
_, catagory_logits = model(img)
loss = loss_criterion(catagory_logits, label)
losses.append(loss.item())
loss.backward()
optimizer.step()
if batch_idx % 500 == 0:
print('Epoch: {}, Batch: {}, Loss:{:.4f}'.format(epoch_idx, batch_idx, loss.item()), flush=True)
print('Epoch: {}, Loss:{:.4f}'.format(epoch_idx, np.mean(losses)), flush=True)
with torch.no_grad():
model.eval()
pred = []
gold = []
for batch_idx, batch in enumerate(val_dataloader):
img, label = batch
img = img.to('cuda')
gold.extend(label.numpy().tolist())
_, catagory_logits = model(img)
catagory_idx = torch.argmax(catagory_logits, dim=-1)
catagory_idx = catagory_idx.detach().cpu().numpy().tolist()
pred.extend(catagory_idx)
acc = accuracy_score(gold, pred)
pre = precision_score(gold, pred, average='macro')
rec = recall_score(gold, pred, average='macro')
f1 = f1_score(gold, pred, average='macro')
print('Epoch: {}, p: {:.4f}, r: {:.4f}, f1: {:.4f} ACC: {:.4f}'.format(epoch_idx, pre, rec, f1, acc), flush=True)
if f1 >= best_f1 or acc >= best_acc:
print('Save best ckpt.', flush=True)
torch.save(model.state_dict(), os.path.join(args.save_path, 'category_best.pth'))
best_acc = acc
best_f1 = f1
model.train()
if __name__ == '__main__':
args = parse_args()
if args.action == 'eval':
eval(args)
if args.action == 'train':
train(args)