-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpthreads.cpp
197 lines (168 loc) · 5.59 KB
/
pthreads.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <pthread.h>
#include "common.h"
//
// global variables
//
int n, n_threads,no_output=0;
particle_t *particles;
FILE *fsave,*fsum;
pthread_barrier_t barrier;
pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIZER;
double gabsmin=1.0,gabsavg=0.0;
//
// check that pthreads routine call was successful
//
#define P( condition ) {if( (condition) != 0 ) { printf( "\n FAILURE in %s, line %d\n", __FILE__, __LINE__ );exit( 1 );}}
//
// This is where the action happens
//
void *thread_routine( void *pthread_id )
{
int navg,nabsavg=0;
double dmin,absmin=1.0,davg,absavg=0.0;
int thread_id = *(int*)pthread_id;
int particles_per_thread = (n + n_threads - 1) / n_threads;
int first = min( thread_id * particles_per_thread, n );
int last = min( (thread_id+1) * particles_per_thread, n );
//
// simulate a number of time steps
//
for( int step = 0; step < NSTEPS; step++ )
{
dmin = 1.0;
navg = 0;
davg = 0.0;
//
// compute forces
//
for( int i = first; i < last; i++ )
{
particles[i].ax = particles[i].ay = 0;
for (int j = 0; j < n; j++ )
apply_force( particles[i], particles[j], &dmin, &davg, &navg );
}
pthread_barrier_wait( &barrier );
if( no_output == 0 )
{
//
// Computing statistical data
//
if (navg) {
absavg += davg/navg;
nabsavg++;
}
if (dmin < absmin) absmin = dmin;
}
//
// move particles
//
for( int i = first; i < last; i++ )
move( particles[i] );
pthread_barrier_wait( &barrier );
//
// save if necessary
//
if (no_output == 0)
if( thread_id == 0 && fsave && (step%SAVEFREQ) == 0 )
save( fsave, n, particles );
}
if (no_output == 0 )
{
absavg /= nabsavg;
//printf("Thread %d has absmin = %lf and absavg = %lf\n",thread_id,absmin,absavg);
pthread_mutex_lock(&mutex);
gabsavg += absavg;
if (absmin < gabsmin) gabsmin = absmin;
pthread_mutex_unlock(&mutex);
}
return NULL;
}
//
// benchmarking program
//
int main( int argc, char **argv )
{
//
// process command line
//
if( find_option( argc, argv, "-h" ) >= 0 )
{
printf( "Options:\n" );
printf( "-h to see this help\n" );
printf( "-n <int> to set the number of particles\n" );
printf( "-p <int> to set the number of threads\n" );
printf( "-o <filename> to specify the output file name\n" );
printf( "-s <filename> to specify a summary file name\n" );
printf( "-no turns off all correctness checks and particle output\n");
return 0;
}
n = read_int( argc, argv, "-n", 1000 );
n_threads = read_int( argc, argv, "-p", 2 );
char *savename = read_string( argc, argv, "-o", NULL );
char *sumname = read_string( argc, argv, "-s", NULL );
fsave = savename ? fopen( savename, "w" ) : NULL;
fsum = sumname ? fopen ( sumname, "a" ) : NULL;
if( find_option( argc, argv, "-no" ) != -1 )
no_output = 1;
//
// allocate resources
//
particles = (particle_t*) malloc( n * sizeof(particle_t) );
set_size( n );
init_particles( n, particles );
pthread_attr_t attr;
P( pthread_attr_init( &attr ) );
P( pthread_barrier_init( &barrier, NULL, n_threads ) );
int *thread_ids = (int *) malloc( n_threads * sizeof( int ) );
for( int i = 0; i < n_threads; i++ )
thread_ids[i] = i;
pthread_t *threads = (pthread_t *) malloc( n_threads * sizeof( pthread_t ) );
//
// do the parallel work
//
double simulation_time = read_timer( );
for( int i = 1; i < n_threads; i++ )
P( pthread_create( &threads[i], &attr, thread_routine, &thread_ids[i] ) );
thread_routine( &thread_ids[0] );
for( int i = 1; i < n_threads; i++ )
P( pthread_join( threads[i], NULL ) );
simulation_time = read_timer( ) - simulation_time;
printf( "n = %d, simulation time = %g seconds", n, simulation_time);
if( find_option( argc, argv, "-no" ) == -1 )
{
gabsavg /= (n_threads*1.0);
//
// -the minimum distance absmin between 2 particles during the run of the simulation
// -A Correct simulation will have particles stay at greater than 0.4 (of cutoff) with typical values between .7-.8
// -A simulation were particles don't interact correctly will be less than 0.4 (of cutoff) with typical values between .01-.05
//
// -The average distance absavg is ~.95 when most particles are interacting correctly and ~.66 when no particles are interacting
//
printf( ", absmin = %lf, absavg = %lf", gabsmin, gabsavg);
if (gabsmin < 0.4) printf ("\nThe minimum distance is below 0.4 meaning that some particle is not interacting ");
if (gabsavg < 0.8) printf ("\nThe average distance is below 0.8 meaning that most particles are not interacting ");
}
printf("\n");
//
// Printing summary data
//
if( fsum)
fprintf(fsum,"%d %d %g\n",n,n_threads,simulation_time);
//
// release resources
//
P( pthread_barrier_destroy( &barrier ) );
P( pthread_attr_destroy( &attr ) );
free( thread_ids );
free( threads );
free( particles );
if( fsave )
fclose( fsave );
if( fsum )
fclose ( fsum );
return 0;
}