-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmpi.cpp
182 lines (156 loc) · 5.55 KB
/
mpi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#include <mpi.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "common.h"
//
// benchmarking program
//
int main( int argc, char **argv )
{
int navg, nabsavg=0;
double dmin, absmin=1.0,davg,absavg=0.0;
double rdavg,rdmin;
int rnavg;
//
// process command line parameters
//
if( find_option( argc, argv, "-h" ) >= 0 )
{
printf( "Options:\n" );
printf( "-h to see this help\n" );
printf( "-n <int> to set the number of particles\n" );
printf( "-o <filename> to specify the output file name\n" );
printf( "-s <filename> to specify a summary file name\n" );
printf( "-no turns off all correctness checks and particle output\n");
return 0;
}
int n = read_int( argc, argv, "-n", 1000 );
char *savename = read_string( argc, argv, "-o", NULL );
char *sumname = read_string( argc, argv, "-s", NULL );
//
// set up MPI
//
int n_proc, rank;
MPI_Init( &argc, &argv );
MPI_Comm_size( MPI_COMM_WORLD, &n_proc );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
//
// allocate generic resources
//
FILE *fsave = savename && rank == 0 ? fopen( savename, "w" ) : NULL;
FILE *fsum = sumname && rank == 0 ? fopen ( sumname, "a" ) : NULL;
particle_t *particles = (particle_t*) malloc( n * sizeof(particle_t) );
MPI_Datatype PARTICLE;
MPI_Type_contiguous( 6, MPI_DOUBLE, &PARTICLE );
MPI_Type_commit( &PARTICLE );
//
// set up the data partitioning across processors
//
int particle_per_proc = (n + n_proc - 1) / n_proc;
int *partition_offsets = (int*) malloc( (n_proc+1) * sizeof(int) );
for( int i = 0; i < n_proc+1; i++ )
partition_offsets[i] = min( i * particle_per_proc, n );
int *partition_sizes = (int*) malloc( n_proc * sizeof(int) );
for( int i = 0; i < n_proc; i++ )
partition_sizes[i] = partition_offsets[i+1] - partition_offsets[i];
//
// allocate storage for local partition
//
int nlocal = partition_sizes[rank];
particle_t *local = (particle_t*) malloc( nlocal * sizeof(particle_t) );
//
// initialize and distribute the particles (that's fine to leave it unoptimized)
//
set_size( n );
if( rank == 0 )
init_particles( n, particles );
MPI_Scatterv( particles, partition_sizes, partition_offsets, PARTICLE, local, nlocal, PARTICLE, 0, MPI_COMM_WORLD );
//
// simulate a number of time steps
//
double simulation_time = read_timer( );
for( int step = 0; step < NSTEPS; step++ )
{
navg = 0;
dmin = 1.0;
davg = 0.0;
//
// collect all global data locally (not good idea to do)
//
MPI_Allgatherv( local, nlocal, PARTICLE, particles, partition_sizes, partition_offsets, PARTICLE, MPI_COMM_WORLD );
//
// save current step if necessary (slightly different semantics than in other codes)
//
if( find_option( argc, argv, "-no" ) == -1 )
if( fsave && (step%SAVEFREQ) == 0 )
save( fsave, n, particles );
//
// compute all forces
//
for( int i = 0; i < nlocal; i++ )
{
local[i].ax = local[i].ay = 0;
for (int j = 0; j < n; j++ )
apply_force( local[i], particles[j], &dmin, &davg, &navg );
}
if( find_option( argc, argv, "-no" ) == -1 )
{
MPI_Reduce(&davg,&rdavg,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
MPI_Reduce(&navg,&rnavg,1,MPI_INT,MPI_SUM,0,MPI_COMM_WORLD);
MPI_Reduce(&dmin,&rdmin,1,MPI_DOUBLE,MPI_MIN,0,MPI_COMM_WORLD);
if (rank == 0){
//
// Computing statistical data
//
if (rnavg) {
absavg += rdavg/rnavg;
nabsavg++;
}
if (rdmin < absmin) absmin = rdmin;
}
}
//
// move particles
//
for( int i = 0; i < nlocal; i++ )
move( local[i] );
}
simulation_time = read_timer( ) - simulation_time;
if (rank == 0) {
printf( "n = %d, simulation time = %g seconds", n, simulation_time);
if( find_option( argc, argv, "-no" ) == -1 )
{
if (nabsavg) absavg /= nabsavg;
//
// -the minimum distance absmin between 2 particles during the run of the simulation
// -A Correct simulation will have particles stay at greater than 0.4 (of cutoff) with typical values between .7-.8
// -A simulation were particles don't interact correctly will be less than 0.4 (of cutoff) with typical values between .01-.05
//
// -The average distance absavg is ~.95 when most particles are interacting correctly and ~.66 when no particles are interacting
//
printf( ", absmin = %lf, absavg = %lf", absmin, absavg);
if (absmin < 0.4) printf ("\nThe minimum distance is below 0.4 meaning that some particle is not interacting");
if (absavg < 0.8) printf ("\nThe average distance is below 0.8 meaning that most particles are not interacting");
}
printf("\n");
//
// Printing summary data
//
if( fsum)
fprintf(fsum,"%d %d %g\n",n,n_proc,simulation_time);
}
//
// release resources
//
if ( fsum )
fclose( fsum );
free( partition_offsets );
free( partition_sizes );
free( local );
free( particles );
if( fsave )
fclose( fsave );
MPI_Finalize( );
return 0;
}