-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommon.cpp
186 lines (164 loc) · 4.01 KB
/
common.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <float.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <sys/time.h>
#include "common.h"
double size;
//
// tuned constants
//
#define density 0.0005
#define mass 0.01
#define cutoff 0.01
#define min_r (cutoff/100)
#define dt 0.0005
//
// timer
//
double read_timer( )
{
static bool initialized = false;
static struct timeval start;
struct timeval end;
if( !initialized )
{
gettimeofday( &start, NULL );
initialized = true;
}
gettimeofday( &end, NULL );
return (end.tv_sec - start.tv_sec) + 1.0e-6 * (end.tv_usec - start.tv_usec);
}
//
// keep density constant
//
void set_size( int n )
{
size = sqrt( density * n );
}
//
// Initialize the particle positions and velocities
//
void init_particles( int n, particle_t *p )
{
srand48( time( NULL ) );
int sx = (int)ceil(sqrt((double)n));
int sy = (n+sx-1)/sx;
int *shuffle = (int*)malloc( n * sizeof(int) );
for( int i = 0; i < n; i++ )
shuffle[i] = i;
for( int i = 0; i < n; i++ )
{
//
// make sure particles are not spatially sorted
//
int j = lrand48()%(n-i);
int k = shuffle[j];
shuffle[j] = shuffle[n-i-1];
//
// distribute particles evenly to ensure proper spacing
//
p[i].x = size*(1.+(k%sx))/(1+sx);
p[i].y = size*(1.+(k/sx))/(1+sy);
//
// assign random velocities within a bound
//
p[i].vx = drand48()*2-1;
p[i].vy = drand48()*2-1;
}
free( shuffle );
}
//
// interact two particles
//
void apply_force( particle_t &particle, particle_t &neighbor , double *dmin, double *davg, int *navg)
{
double dx = neighbor.x - particle.x;
double dy = neighbor.y - particle.y;
double r2 = dx * dx + dy * dy;
if( r2 > cutoff*cutoff )
return;
if (r2 != 0)
{
if (r2/(cutoff*cutoff) < *dmin * (*dmin))
*dmin = sqrt(r2)/cutoff;
(*davg) += sqrt(r2)/cutoff;
(*navg) ++;
}
r2 = fmax( r2, min_r*min_r );
double r = sqrt( r2 );
//
// very simple short-range repulsive force
//
double coef = ( 1 - cutoff / r ) / r2 / mass;
particle.ax += coef * dx;
particle.ay += coef * dy;
}
//
// integrate the ODE
//
void move( particle_t &p )
{
//
// slightly simplified Velocity Verlet integration
// conserves energy better than explicit Euler method
//
p.vx += p.ax * dt;
p.vy += p.ay * dt;
p.x += p.vx * dt;
p.y += p.vy * dt;
//
// bounce from walls
//
while( p.x < 0 || p.x > size )
{
p.x = p.x < 0 ? -p.x : 2*size-p.x;
p.vx = -p.vx;
}
while( p.y < 0 || p.y > size )
{
p.y = p.y < 0 ? -p.y : 2*size-p.y;
p.vy = -p.vy;
}
}
//
// I/O routines
//
void save( FILE *f, int n, particle_t *p )
{
static bool first = true;
if( first )
{
fprintf( f, "%d %g\n", n, size );
first = false;
}
for( int i = 0; i < n; i++ )
fprintf( f, "%g %g\n", p[i].x, p[i].y );
}
//
// command line option processing
//
int find_option( int argc, char **argv, const char *option )
{
for( int i = 1; i < argc; i++ )
if( strcmp( argv[i], option ) == 0 )
return i;
return -1;
}
int read_int( int argc, char **argv, const char *option, int default_value )
{
int iplace = find_option( argc, argv, option );
if( iplace >= 0 && iplace < argc-1 )
return atoi( argv[iplace+1] );
return default_value;
}
char *read_string( int argc, char **argv, const char *option, char *default_value )
{
int iplace = find_option( argc, argv, option );
if( iplace >= 0 && iplace < argc-1 )
return argv[iplace+1];
return default_value;
}