-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinfer.sh
27 lines (21 loc) · 870 Bytes
/
infer.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
export CUDA=0
export CHECKPOINT_DIR="jingheya/lotus-depth-g-v2-0-disparity"
export OUTPUT_DIR="output/Depth_G_Infer"
export TASK_NAME="depth"
# export CHECKPOINT_DIR="jingheya/lotus-normal-g-v1-0"
# export OUTPUT_DIR="output/Normal_G_Infer"
# export TASK_NAME="normal"
# export MODE="regression"
export MODE="generation"
export TEST_IMAGES="assets/in-the-wild_example"
CUDA_VISIBLE_DEVICES=$CUDA python infer.py \
--pretrained_model_name_or_path=$CHECKPOINT_DIR \
--prediction_type="sample" \
--seed=42 \
--half_precision \
--input_dir=$TEST_IMAGES \
--task_name=$TASK_NAME \
--mode=$MODE \
--output_dir=$OUTPUT_DIR \
--disparity
# --processing_res=0 # Defualt: 768. To obtain more fine-grained results, you can set `--processing_res=0` (original resolution) or a higher resolution.