-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAwesome_CNN.py
91 lines (49 loc) · 2.36 KB
/
Awesome_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
classifier = Sequential()
#Convolution
classifier.add(Conv2D(32, (3, 3), input_shape=(128, 128, 3), activation="relu"))
classifier.add(Conv2D(32, (3, 3), activation="relu"))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), activation="relu"))
classifier.add(Conv2D(64, (6, 6), activation="relu"))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
# Flatten
classifier.add(Flatten())
#Full Connection
classifier.add(Dense(units = 128, activation = "relu"))
classifier.add(Dropout(0.5))
classifier.add(Dense(units = 256, activation = "relu"))
classifier.add(Dropout(0.5))
classifier.add(Dense(units = 128, activation = "relu"))
classifier.add(Dropout(0.5))
classifier.add(Dense(units = 8, activation = "softmax"))
classifier.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
#Image preprocessing and altering
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('../dataset/training_set',
target_size = (128, 128),
batch_size = 32,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('../dataset/test_set',
target_size = (128, 128),
batch_size = 32,
class_mode = 'categorical')
classifier.fit_generator(training_set,
steps_per_epoch = 2000,
epochs = 50,
validation_data = test_set,
validation_steps = 700)
#Save model & weights
classifier_json = classifier.to_json()
with open('cnn_demo', 'w') as json_file:
json_file.write(classifier_json)
classifier.save_weights("classifier.h5")
#UNCOMMENT TO SEE CNN CATEGORY OUTPUT INDICES
#training_set.class_indices