forked from AutoGPTQ/AutoGPTQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
105 lines (94 loc) · 3.41 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import platform
import sys
from pathlib import Path
from setuptools import setup, find_packages
try:
import torch
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
IN_GITHUB_ACTIONS = os.environ.get("GITHUB_ACTIONS", "false") == "true"
python_min_version = (3, 8, 0)
python_min_version_str = '.'.join(map(str, python_min_version))
if sys.version_info < python_min_version:
print(f"You are using Python {platform.python_version()}. Python >={python_min_version_str} is required.")
sys.exit(-1)
CUDA_VERSION = "".join(os.environ.get("CUDA_VERSION", "").split("."))
version = "0.2.1" + (f"+cu{CUDA_VERSION}" if CUDA_VERSION and IN_GITHUB_ACTIONS else "")
common_setup_kwargs = {
"version": version,
"name": "auto_gptq",
"author": "PanQiWei",
"description": "An easy-to-use LLMs quantization package with user-friendly apis, based on GPTQ algorithm.",
"long_description": (Path(__file__).parent / "README.md").read_text(),
"long_description_content_type": "text/markdown",
"url": "https://github.com/PanQiWei/AutoGPTQ",
"keywords": ["gptq", "quantization", "large-language-models", "pytorch", "transformers"],
"platforms": ["windows", "linux"],
"classifiers": [
"Environment :: GPU :: NVIDIA CUDA :: 11.7",
"Environment :: GPU :: NVIDIA CUDA :: 11.8",
"License :: OSI Approved :: MIT License",
"Natural Language :: Chinese (Simplified)",
"Natural Language :: English",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: C++",
],
"python_requires": f">={python_min_version_str}"
}
requirements = [
"accelerate>=0.19.0",
"datasets",
"numpy",
"rouge",
"torch>=1.13.0",
"safetensors",
"transformers>=4.26.1"
]
extras_require = {
"llama": ["transformers>=4.28.0"],
"triton": ["triton>=2.0.0"]
}
include_dirs = ["autogptq_cuda"]
if TORCH_AVAILABLE:
BUILD_CUDA_EXT = int(os.environ.get('BUILD_CUDA_EXT', '1')) == 1
additional_setup_kwargs = dict()
if BUILD_CUDA_EXT and (torch.cuda.is_available() or IN_GITHUB_ACTIONS):
from torch.utils import cpp_extension
from distutils.sysconfig import get_python_lib
conda_cuda_include_dir=os.path.join(get_python_lib(),"nvidia/cuda_runtime/include")
if os.path.isdir(conda_cuda_include_dir):
include_dirs.append(conda_cuda_include_dir)
print(f"appending conda cuda include dir {conda_cuda_include_dir}")
extensions = [
cpp_extension.CUDAExtension(
"autogptq_cuda",
[
"autogptq_cuda/autogptq_cuda.cpp",
"autogptq_cuda/autogptq_cuda_kernel.cu"
]
)
]
additional_setup_kwargs = {
"ext_modules": extensions,
"cmdclass": {'build_ext': cpp_extension.BuildExtension}
}
common_setup_kwargs.update(additional_setup_kwargs)
setup(
packages=find_packages(),
install_requires=requirements,
extras_require=extras_require,
include_dirs=include_dirs,
**common_setup_kwargs
)
else:
setup(
packages=find_packages(),
install_requires=requirements,
extras_require=extras_require,
include_dirs=include_dirs,
**common_setup_kwargs
)