-
Notifications
You must be signed in to change notification settings - Fork 2k
/
openai_completions.py
292 lines (269 loc) · 9.59 KB
/
openai_completions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
from functools import cached_property
from operator import itemgetter
from typing import Any, Dict, List, Optional, Tuple, Union
from lm_eval.api.registry import register_model
from lm_eval.models.api_models import TemplateAPI
from lm_eval.models.utils import handle_stop_sequences
from lm_eval.utils import eval_logger
@register_model("local-completions")
class LocalCompletionsAPI(TemplateAPI):
def __init__(
self,
base_url=None,
tokenizer_backend="huggingface",
**kwargs,
):
super().__init__(
base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
)
def _create_payload(
self,
messages: Union[List[List[int]], List[dict], List[str], str],
generate=False,
gen_kwargs: Optional[dict] = None,
seed: int = 1234,
eos=None,
**kwargs,
) -> dict:
if generate:
gen_kwargs.pop("do_sample", False)
if "max_tokens" in gen_kwargs:
max_tokens = gen_kwargs.pop("max_tokens")
else:
max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
temperature = gen_kwargs.pop("temperature", 0)
stop = handle_stop_sequences(gen_kwargs.pop("until", None), eos)
return {
"prompt": messages,
"model": self.model,
"max_tokens": max_tokens,
"temperature": temperature,
"stop": stop,
"seed": seed,
**gen_kwargs,
}
else:
return {
"model": self.model,
"prompt": messages,
"temperature": 0,
"max_tokens": 1,
"logprobs": 1,
"seed": seed,
"echo": True,
}
@staticmethod
def parse_logprobs(
outputs: Union[Dict, List[Dict]],
tokens: List[List[int]] = None,
ctxlens: List[int] = None,
**kwargs,
) -> List[Tuple[float, bool]]:
res = []
if not isinstance(outputs, list):
outputs = [outputs]
for out in outputs:
for choice, ctxlen in zip(
sorted(out["choices"], key=itemgetter("index")), ctxlens
):
assert ctxlen > 0, "Context length must be greater than 0"
logprobs = sum(choice["logprobs"]["token_logprobs"][ctxlen:-1])
tokens_logprobs = choice["logprobs"]["token_logprobs"][ctxlen:-1]
top_logprobs = choice["logprobs"]["top_logprobs"][ctxlen:-1]
is_greedy = True
for tok, top in zip(tokens_logprobs, top_logprobs):
if tok != max(top.values()):
is_greedy = False
break
res.append((logprobs, is_greedy))
return res
@staticmethod
def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
res = []
if not isinstance(outputs, list):
outputs = [outputs]
for out in outputs:
tmp = [None] * len(out["choices"])
for choices in out["choices"]:
tmp[choices["index"]] = choices["text"]
res = res + tmp
return res
@property
def api_key(self):
return os.environ.get("OPENAI_API_KEY", "")
@register_model("local-chat-completions")
class LocalChatCompletion(LocalCompletionsAPI):
def __init__(
self,
base_url=None,
tokenizer_backend=None,
tokenized_requests=False,
**kwargs,
):
eval_logger.warning(
"chat-completions endpoint requires the `--apply_chat_template` flag."
)
super().__init__(
base_url=base_url,
tokenizer_backend=tokenizer_backend,
tokenized_requests=tokenized_requests,
**kwargs,
)
if self._batch_size > 1:
eval_logger.warning(
"Chat completions does not support batching. Defaulting to batch size 1."
)
self._batch_size = 1
def _create_payload(
self,
messages: List[Dict],
generate=False,
gen_kwargs: dict = None,
seed=1234,
eos=None,
**kwargs,
) -> dict:
assert (
type(messages) is not str
), "chat-completions require the --apply_chat_template flag."
gen_kwargs.pop("do_sample", False)
if "max_tokens" in gen_kwargs:
max_tokens = gen_kwargs.pop("max_tokens")
else:
max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
temperature = gen_kwargs.pop("temperature", 0)
stop = handle_stop_sequences(gen_kwargs.pop("until", None), eos)
if not isinstance(stop, (list, tuple)):
stop = [stop]
return {
"messages": messages,
"model": self.model,
"max_tokens": max_tokens,
"temperature": temperature,
"stop": stop[:4],
"seed": seed,
**gen_kwargs,
}
@staticmethod
def parse_generations(outputs: Union[Dict, List[Dict]], **kwargs) -> List[str]:
res = []
if not isinstance(outputs, list):
outputs = [outputs]
for out in outputs:
tmp = [None] * len(out["choices"])
for choices in out["choices"]:
tmp[choices["index"]] = choices["message"]["content"]
res = res + tmp
return res
def tok_encode(
self,
string: Union[str, Any],
left_truncate_len=None,
add_special_tokens=None,
**kwargs,
) -> Union[List[str], List[int], Any]:
return string
def loglikelihood(self, requests, **kwargs):
raise NotImplementedError(
"Loglikelihood is not supported for chat completions. Consider using the completions API instead."
)
@register_model(
"openai-completions",
)
class OpenAICompletionsAPI(LocalCompletionsAPI):
def __init__(
self,
base_url="https://api.openai.com/v1/completions",
tokenizer_backend="tiktoken",
**kwargs,
):
super().__init__(
base_url=base_url, tokenizer_backend=tokenizer_backend, **kwargs
)
@cached_property
def api_key(self):
"""Override this property to return the API key for the API request."""
key = os.environ.get("OPENAI_API_KEY", None)
if key is None:
raise ValueError(
"API key not found. Please set the `OPENAI_API_KEY` environment variable."
)
return key
def loglikelihood(self, requests, **kwargs):
assert (
self.model
in [
"babbage-002",
"davinci-002",
]
), f"Prompt loglikelihoods are only supported by OpenAI's API for {['babbage-002', 'davinci-002']}."
return super().loglikelihood(requests, **kwargs)
def chat_template(self, chat_template: Union[bool, str] = False) -> Optional[str]:
return ""
@register_model("openai-chat-completions")
class OpenAIChatCompletion(LocalChatCompletion):
def __init__(
self,
base_url="https://api.openai.com/v1/chat/completions",
tokenizer_backend=None,
tokenized_requests=False,
**kwargs,
):
if "o1" in kwargs.get("model", ""):
eval_logger.warning(
"o1 models do not support `stop` and only support temperature=1"
)
super().__init__(
base_url=base_url,
tokenizer_backend=tokenizer_backend,
tokenized_requests=tokenized_requests,
**kwargs,
)
@cached_property
def api_key(self):
"""Override this property to return the API key for the API request."""
key = os.environ.get("OPENAI_API_KEY", None)
if key is None:
raise ValueError(
"API key not found. Please set the `OPENAI_API_KEY` environment variable."
)
return key
def loglikelihood(self, requests, **kwargs):
raise NotImplementedError(
"Loglikelihood (and therefore `multiple_choice`-type tasks) is not supported for chat completions as OpenAI does not provide prompt logprobs. See https://github.com/EleutherAI/lm-evaluation-harness/issues/942#issuecomment-1777836312 or https://github.com/EleutherAI/lm-evaluation-harness/issues/1196 for more background on this limitation."
)
def _create_payload(
self,
messages: List[Dict],
generate=False,
gen_kwargs: dict = None,
seed=1234,
eos="<|endoftext|>",
**kwargs,
) -> dict:
assert (
type(messages) is not str
), "chat-completions require the --apply_chat_template flag."
gen_kwargs.pop("do_sample", False)
if "max_tokens" in gen_kwargs:
max_tokens = gen_kwargs.pop("max_tokens")
else:
max_tokens = gen_kwargs.pop("max_gen_toks", self._max_gen_toks)
temperature = gen_kwargs.pop("temperature", 0)
stop = handle_stop_sequences(gen_kwargs.pop("until", ["<|endoftext|>"]), eos)
if not isinstance(stop, (list, tuple)):
stop = [stop]
output = {
"messages": messages,
"model": self.model,
"max_completion_tokens": max_tokens,
"temperature": temperature,
"stop": stop[:4],
"seed": seed,
**gen_kwargs,
}
if "o1" in self.model:
output.pop("stop")
output["temperature"] = 1
return output