diff --git a/README.md b/README.md index 8c2c12c..34fe5c5 100644 --- a/README.md +++ b/README.md @@ -6,22 +6,22 @@ Script to classify images of plants and animals with the image-based species rec 1. (recommended but not absolutely necessary) create and activate own (conda) environment 2. install packages -``` -pip install torch torchvision -``` + ``` + pip install torch torchvision + ``` 3. Clone this repository -``` -git clone https://github.com/EibSReM/iNaturalist_Competition.git -``` -and change to respective directory + ``` + git clone https://github.com/EibSReM/iNaturalist_Competition.git + ``` + and change to respective directory 5. Download pretrained models from the paper [here](https://cornell.box.com/s/bnyhq5lwobu6fgjrub44zle0pyjijbmw), mentioned in the [papers repository](https://github.com/visipedia/newt/tree/main/benchmark). -6. Adapt path to pytorch model and images (folder) in the `inference.py` script (we used the model in: cvpr21_newt_pretrained_models\cvpr21_newt_pretrained_models\pt\inat2021_supervised_large_from_scratch.pth.tar) +6. Adapt path to pytorch model and images (folder) in the `inference.py` script. We used the model in: `cvpr21_newt_pretrained_models\cvpr21_newt_pretrained_models\pt\inat2021_supervised_large_from_scratch.pth.tar`. Image data we used is available upon request. 7. Run script -``` -python inference.py -``` + ``` + python inference.py + ``` 8. Find results in `Output.txt` - ## References + Van Horn G, Cole E, Beery S, Wilber K, Belongie S, Mac Aodha O, et al. (2021) Benchmarking Representation Learning for Natural World Image Collections. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 12884‑12893. http://arxiv-export-lb.library.cornell.edu/pdf/2103.16483