-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
190 lines (156 loc) · 7.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import copy
import os.path as osp
import numpy as np
import torch
import torch.nn.functional as F
from absl import app, flags
from torch.optim import AdamW
# custom modules
from logger import setup_logger
from utils import set_random_seeds, edgeidx2sparse
from transforms import get_graph_drop_transform
from model import GCN
from loss import inv_dec_loss
from eval import test, batch_test
from dataloader import load_data
FLAGS = flags.FLAGS
flags.DEFINE_integer(
'model_seed', 123, 'Random seed used for model initialization and training.')
flags.DEFINE_integer(
'data_seed', 0, 'Random seed used to generate train/val/test split.')
flags.DEFINE_integer('gpu_id', 0, 'The id of GPU to use. -1 indicates CPU.')
# Dataset.
flags.DEFINE_enum('dataset', 'ogbn-mag',
['Cora', 'Citeseer', 'Pubmed', 'Computers', 'Photo',
'CS', 'Physics', 'WikiCS', 'ogbn-arxiv', 'ogbn-mag'],
'Which graph dataset to use.')
flags.DEFINE_string('data_dir', '~/public_data/pyg_data/',
'Where the dataset resides.')
# Architecture.
flags.DEFINE_multi_integer('graph_encoder_layer', [
256, 256], 'Conv layer sizes.')
flags.DEFINE_bool('batchnorm', True, 'Batchnorm or not.')
flags.DEFINE_string('layer_name', "GCN", 'Con. layer.')
flags.DEFINE_string('act_name', "ReLU", 'Activation funciton.')
# Training hyperparameters.
flags.DEFINE_float('lambd', 1e-3, 'The ratio for decorrelation loss.')
flags.DEFINE_integer('epochs', 500, 'The number of training epochs.')
flags.DEFINE_float('lr', 1e-3, 'The learning rate for model training.')
flags.DEFINE_float('weight_decay', 1e-5,
'The value of the weight decay for training.')
flags.DEFINE_float(
'lr_cls', 1e-2,
'The learning rate for model training for downstream classifier.')
flags.DEFINE_float(
'wd_cls', 1e-5,
'The value of the weight decay for training for downstream classifier..')
flags.DEFINE_integer(
'epochs_cls', 100,
'The number of training epochs for node downstream classifier.')
# Augmentations.
flags.DEFINE_float('drop_edge_p', 0.4, 'Probability of edge dropout 1.')
flags.DEFINE_float('drop_feat_p', 0.2,
'Probability of node feature dropout 1.')
# Logging and checkpoint.
flags.DEFINE_string(
'logdir', None, 'Where the checkpoint and logs are stored.')
flags.DEFINE_string('mask_dir', './mask',
'Where the checkpoint and logs are stored.')
# Evaluation
flags.DEFINE_integer('eval_period', 5, 'Evaluate every eval_epochs.')
def run(dataset, logger):
gpu_available = torch.cuda.is_available() and FLAGS.gpu_id >= 0
device = torch.device("cuda:{}".format(FLAGS.gpu_id)) if gpu_available \
else torch.device("cpu")
logger.info("Using {} for training.".format(device))
data = dataset[0].to(device)
num_classes = dataset.num_classes
# set random seed
if FLAGS.model_seed is not None:
set_random_seeds(FLAGS.model_seed)
logger.info("Random seed set to {}.".format(FLAGS.model_seed))
transform = get_graph_drop_transform(drop_edge_p=FLAGS.drop_edge_p,
drop_feat_p=FLAGS.drop_feat_p)
encoder = GCN(data.x.size(1), FLAGS.graph_encoder_layer, FLAGS).to(device)
optimizer = AdamW(params=[{"params" :encoder.parameters()}],
lr=FLAGS.lr,
weight_decay=FLAGS.weight_decay)
# number of parameters
total_params = sum([param.nelement() for param in encoder.parameters()])
logger.info(encoder)
logger.info("Number of parameter: %.2fM" % (total_params/1e6))
# start training
logger.info("Satrt training")
best_test_acc_mean, best_test_acc_std, \
best_test_acc_epoch, best_test_acc_list = 0, 0, 0, []
for epoch in range(1, 1 + FLAGS.epochs):
# torch.cuda.empty_cache()
encoder.train()
optimizer.zero_grad()
data1 = transform(data)
data2 = transform(data)
data1.edge_index = edgeidx2sparse(data1.edge_index, data1.x.size(0))
data2.edge_index = edgeidx2sparse(data2.edge_index, data2.x.size(0))
outputs1, outputs2 = encoder(data1.x, data1.edge_index), encoder(data2.x, data2.edge_index)
total_loss = 0.
for o1, o2 in list(zip(outputs1, outputs2)):
loss = inv_dec_loss(o1, o2, FLAGS.lambd)
# total_loss += loss
total_loss += loss.item()
loss.backward()
# total_loss.backward()
optimizer.step()
# eval
if epoch == 1 or epoch % FLAGS.eval_period == 0:
encoder.eval()
with torch.no_grad():
# embeds = torch.cat(encoder(data), dim=1)
embeds = encoder(data.x, data.edge_index)[-1]
# embeds = encoder.embeds(data.x, data.edge_index)
# embeds = torch.cat(embeds, dim=1)
if FLAGS.dataset in ['ogbn-arxiv', 'ogbn-mag']:
_, test_acc_list = batch_test(embeds=embeds,
data=data,
num_classes=num_classes,
FLAGS=FLAGS,
device=device)
else:
_, test_acc_list = test(embeds=embeds,
data=data,
num_classes=num_classes,
FLAGS=FLAGS,
device=device)
test_acc_mean, test_acc_std = \
np.mean(test_acc_list), np.std(test_acc_list)
if test_acc_mean > best_test_acc_mean:
best_test_acc_mean = test_acc_mean
best_test_acc_std = test_acc_std
best_test_acc_epoch = epoch
best_test_acc_list = copy.deepcopy(test_acc_list)
# save encoder weights
# torch.save(model.online_encoder.state_dict(), os.path.join(FLAGS.logdir, '{}.pt'.format(FLAGS.dataset)))
logger.info("[Epoch {:4d}/{:4d}] loss={:.4f}, "
"test_acc={:.2f}±{:.2f} "
"[best_test_acc: {:.2f}±{:.2f} at epoch {}]".format(
epoch, FLAGS.epochs, total_loss,
test_acc_mean * 100, test_acc_std * 100,
best_test_acc_mean * 100, best_test_acc_std * 100,
best_test_acc_epoch
))
logger.info("Best test acc: {:.2f}±{:.2f} at epoch {}: {}".format(
best_test_acc_mean * 100, best_test_acc_std * 100,
best_test_acc_epoch, best_test_acc_list
))
def get_dataset():
dataset = load_data(data_dir=osp.expanduser(FLAGS.data_dir),
dataset_name=FLAGS.dataset,
mask_dir=FLAGS.mask_dir,
load_mask=False,
save_mask=False)
return dataset
def main(argv):
logger = setup_logger(output="./logs/exp.log".format(FLAGS.dataset))
dataset = get_dataset()
run(dataset=dataset, logger=logger)
if __name__ == "__main__":
app.run(main)