-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel_modify.py
727 lines (648 loc) · 31.6 KB
/
model_modify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
# %%
import torch
import csv
import math
from tqdm import tqdm
import os
import numpy as np
import time
import torch.optim as optim
import pandas as pd
import torch.utils.data as Data
import logging
from transformers import BertTokenizer, BertConfig
from transformers import RobertaTokenizer, RobertaConfig
from transformers import AlbertConfig, AlbertTokenizer
from transformers import GPT2Config, GPT2Tokenizer
from utils.commonsenseQAutils import *
from utils.semevalUtils import (get_all_features_from_task_1,
get_all_features_from_task_2)
from models import BertForMultipleChoice, BertForSequenceClassification, RobertaForMultipleChoice, \
RobertaForMultipleChoiceWithLM, RobertaForMultipleChoiceWithLM2
from models import GPT2ForMultipleChoice, SOTA_goal_model
from models import AlbertForMultipleChoice
import torch.nn.functional as F
from utils.MyDataset import MyDataLoader, MyDataset
from models import GCNNet
from sklearn.externals import joblib
import torch.distributed as dist
# %%
def train(model, train_data, optimizer, args):
model.train()
pbar = tqdm(train_data)
# correct 代表累计正确率,count 代表目前已处理的数据个数
correct = 0
count = 0
train_loss = 0.0
pred_list = []
is_gnn = 'SOTA_goal_model' in str(type(model))
for step, (x, y) in enumerate(pbar):
# x, y = x.to(args['device']), y.to(args['device'])
y = y.to(args['device'], non_blocking=True)
optimizer.zero_grad()
if args['solo']:
# shape: [batch_size, 3, max_seq_length]
output = model(x[:, 0],
attention_mask=x[:, 1],
token_type_ids=x[:, 2],
labels=y)
else:
if not is_gnn:
# input_ids = torch.stack([i[1] for i in x], dim=1).to(args['device'], non_blocking=True)
# attention_mask = torch.stack([i[2] for i in x], dim=1).to(args['device'], non_blocking=True)
# token_type_ids = torch.stack([i[3] for i in x], dim=1).to(args['device'], non_blocking=True)
# position_ids = torch.stack([i[4] for i in x], dim=1).to(args['device'], non_blocking=True)
# with kbert
num_choices = len(x[0])
input_ids = torch.stack([j[1] for i in x for j in i], dim=0).reshape(
(-1, num_choices,) + x[0][0][1].shape).to(
args['device'])
attention_mask = torch.stack([j[2] for i in x for j in i], dim=0).reshape(
(-1, num_choices,) + x[0][0][2].shape).to(
args['device'])
token_type_ids = torch.stack([j[3] for i in x for j in i], dim=0).reshape(
(-1, num_choices,) + x[0][0][3].shape).to(args['device'])
position_ids = torch.stack([j[4] for i in x for j in i], dim=0).reshape(
(-1, num_choices,) + x[0][0][4].shape).to(
args['device'])
# shape: [batch_size, choices_num, 3, max_seq_length]
output = model(input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
# token_type_ids=token_type_ids,
labels=y)
else:
# for SOTA model
output = model(x, labels=y)
loss = output[0].mean()
loss.backward()
optimizer.step()
# 得到预测结果
pred = output[1].softmax(dim=1).argmax(dim=1, keepdim=True)
pred_list.append(output[1].softmax(dim=1))
# print(output[1].softmax(dim=1))
# 计算正确个数
correct += pred.eq(y.view_as(pred)).sum().item()
count += len(y)
train_loss += loss.item()
pbar.set_postfix({
'loss': '{:.3f}'.format(loss.item()),
'acc': '{:.3f}'.format(correct * 1.0 / count)
})
# gpu_track.track()
pbar.close()
return train_loss / count, correct * 1.0 / count, torch.cat(pred_list, dim=0)
# %%
def test(model, test_data, args):
model.eval()
test_loss = 0
correct = 0
count = 0
pred_list = []
is_gnn = 'SOTA_goal_model' in str(type(model))
with torch.no_grad():
for step, (x, y) in enumerate(test_data):
# x, y = x.to(args['device']), y.to(args['device'])
y = y.to(args['device'], non_blocking=True)
if args['solo']:
# shape: [batch_size, 3, max_seq_length]
output = model(x[:, 0],
attention_mask=x[:, 1],
token_type_ids=x[:, 2],
labels=y)
else:
if not is_gnn:
# input_ids = torch.stack([i[1] for i in x], dim=1).to(args['device'], non_blocking=True)
# attention_mask = torch.stack([i[2] for i in x], dim=1).to(args['device'], non_blocking=True)
# token_type_ids = torch.stack([i[3] for i in x], dim=1).to(args['device'], non_blocking=True)
# position_ids = torch.stack([i[4] for i in x], dim=1).to(args['device'], non_blocking=True)
# with kbert
num_choices = len(x[0])
input_ids = torch.stack([j[1] for i in x for j in i], dim=0).reshape(
(-1, num_choices,) + x[0][0][1].shape).to(
args['device'])
attention_mask = torch.stack([j[2] for i in x for j in i], dim=0).reshape(
(-1, num_choices,) + x[0][0][2].shape).to(
args['device'])
token_type_ids = torch.stack([j[3] for i in x for j in i], dim=0).reshape(
(-1, num_choices,) + x[0][0][3].shape).to(args['device'])
position_ids = torch.stack([j[4] for i in x for j in i], dim=0).reshape(
(-1, num_choices,) + x[0][0][4].shape).to(
args['device'])
# shape: [batch_size, choices_num, 3, max_seq_length]
output = model(input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
# token_type_ids=token_type_ids,
labels=y)
else:
# for SOTA model
output = model(x, labels=y)
loss = output[0].mean()
test_loss += loss.item()
pred = output[1].softmax(dim=1).argmax(dim=1, keepdim=True)
pred_list.append(output[1].softmax(dim=1))
correct += pred.eq(y.view_as(pred)).sum().item()
count += len(y)
test_loss /= count
print(
'\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format(
test_loss, correct, count, 100. * correct / count))
return test_loss, correct * 1.0 / count, torch.cat(pred_list, dim=0)
# %%
def create_datasets_solo(features, shuffle=True):
x = []
y = []
for i in features:
x.append(i[0][1:])
y.append(i[1])
x = torch.tensor(x)
y = torch.tensor(y)
if shuffle:
perm = torch.randperm(len(features))
x = x[perm]
y = y[perm]
return Data.TensorDataset(x, y)
def create_datasets(features, shuffle=True):
"""
使用 features 构建 dataset
:param features:
:param choices_num: 选项(label) 个数
:param shuffle: 是否随机顺序,默认 True
:return:
"""
x = []
y = []
for i in features:
res = []
# 存储每个问题选择题的 input_ids, input_mask, segment_ids
choices_num = len(i[0])
for j in range(choices_num):
res.append([[0] * len(i[0][j][1])] + [k.tolist() for k in i[0][j][1:]])
# res.append(i[0][j][1:])
x.append(res)
y.append(i[1])
x = torch.tensor(x)
y = torch.tensor(y)
if shuffle:
perm = torch.randperm(len(features))
# perm = torch.cat((torch.randperm(10000), torch.randperm(2021) + 10000))
x = x[perm]
y = y[perm]
return Data.TensorDataset(x, y)
def create_datasets_with_kbert(features, shuffle=True):
"""
使用 features 构建 dataset
:param features:
:param choices_num: 选项(label) 个数
:param shuffle: 是否随机顺序,默认 True
:return:
"""
if shuffle:
perm = torch.randperm(len(features))
features = [features[i] for i in perm]
x = [i[0] for i in features]
y = torch.tensor([i[1] for i in features])
return MyDataset(x, y)
def create_datasets_with_graph(semantic_features, graph_features, shuffle=True):
if shuffle:
perm = torch.randperm(len(semantic_features))
semantic_features = [semantic_features[i] for i in perm]
graph_features = [graph_features[i] for i in perm]
x = [i[0] for i in semantic_features]
y = torch.tensor([i[1] for i in semantic_features])
return MyDataset(list(zip(x, graph_features)), y)
# %%
def k_fold_cross_validation(dataset, k):
"""
k 折交叉验证
:param dataset:
:param k:
:return:
"""
print(len(dataset))
batch_size_lcm = args['batch_size'] * args['test_batch_size'] // math.gcd(args['batch_size'],
args['test_batch_size'])
data_size = len(dataset) // batch_size_lcm * args['test_batch_size']
print(data_size)
dataset = dataset[:data_size]
data_loader = Data.DataLoader(dataset=Data.TensorDataset(
dataset[:][0], dataset[:][1]),
shuffle=True,
batch_size=data_size // k,
**kwargs)
data = list(data_loader)
res = 0.0
for i in range(k):
print('---------------- {}-th iteration ------------------'.format(i))
test_data = [
data[i][0].view([-1, args['test_batch_size']] +
list(data[i][0].shape[-3:])),
data[i][1].view(-1, args['test_batch_size'])
]
train_data = [None, None]
for j in range(k):
if j == i:
continue
if train_data[0] is None:
train_data[0], train_data[1] = data[j][0], data[j][1]
else:
train_data[0] = torch.cat((train_data[0], data[j][0]))
train_data[1] = torch.cat((train_data[1], data[j][1]))
train_data[0], train_data[1] = train_data[0].view([-1, args['batch_size']] + list(train_data[0].shape[-3:])), \
train_data[1].view([-1, args['batch_size']])
train_d = []
test_d = []
for j in range(train_data[0].shape[0]):
train_d.append((train_data[0][j], train_data[1][j]))
for j in range(test_data[0].shape[0]):
test_d.append((test_data[0][j], test_data[1][j]))
res += train_and_finetune(model, train_d, test_d, args)[0]
res /= k
print('{} fold cross validation accuracy: {}%'.format(k, res * 100.0))
# %%
def load_checkpoint(model, args, test_acc=-1.0):
"""加载模型权重"""
best_model_temp_path = os.path.join(args['checkpoints_dir'], 'best_model_temp_{}.pth'.format(args['exec_time']))
if os.path.isfile(best_model_temp_path):
model.load_state_dict(torch.load(
best_model_temp_path
))
# if test_acc == -1:
# _, test_acc, _ = test(model, test_data, args)
print('load best model ({:.4f}): {}'.format(test_acc * 100, best_model_temp_path))
def save_checkpoint(model, args, test_acc=-1.0):
if not os.path.isdir(args['checkpoints_dir']):
os.mkdir(args['checkpoints_dir'])
best_model_path = os.path.join(args['checkpoints_dir'], 'best_model_temp_{}.pth'.format(args['exec_time']))
print('save best model ({:.4f}): {}'.format(test_acc * 100, best_model_path))
torch.save(model.state_dict(), best_model_path)
# %%
def train_and_finetune(model, train_data, test_data, args):
global optimizer
"""
因为涉及到固定网络部分层权重,目前没有手动设置而是采用在 model 初始化的时候设置,而在交叉验证中因为要多次创建 model,所以暂时将 model 的初始化放在这里
"""
if args['model_init'] or model is None:
if args['solo']:
model = BertForSequenceClassification.from_pretrained(
'pre_weights/bert-base-uncased_model.bin', config=config)
else:
# model = RobertaForMultipleChoiceWithLM.from_pretrained(
# 'pre_weights/roberta-large_model.bin', config=config)
# model = RobertaForMultipleChoiceWithLM2(tokenizer)
model = RobertaForMultipleChoice.from_pretrained(
'pre_weights/roberta-large_model.bin', config=config)
# model = AlbertForMultipleChoice.from_pretrained(
# 'pre_weights/albert-xxlarge_model.bin', config=config)
# model = SOTA_goal_model(args)
# Test 加载 commonsenseQA 预训练权重作为初始权重
# if os.path.exists('checkpoints/commonsenseQA_pretrain_temp.pth'):
# print('use csqa checkpoint...')
# model.load_state_dict(torch.load('checkpoints/commonsenseQA_pretrain_temp.pth'))
# model = BertForMultipleChoice.from_pretrained(
# 'pre_weights/bert-large-uncased_model.bin', config=config)
# model = GPT2ForMultipleChoice('pre_weights/gpt2-base_model.bin', config=config)
# model.gpt2.resize_token_embeddings(len(tokenizer))
globals()['model'] = model
"""手动固定网络除最后两层以外的所有,迫于无奈,先费点时间算出来需要 fix 多少层"""
model_parameters = list(model.named_parameters())
fix_idx = len(model_parameters) - 2
# fix_idx = 393 - 2 # 201 - 2 # for SOTA model 注释了这里
# fix_idx = 27 - 2 # for albert
white_list = ['lamda1', 'lamda2',
'roberta.lamda1', 'roberta.lamda2',
'roberta.classifier.weight',
'roberta.classifier.bias']
print(type(model))
print('unfixed layers: ', ', '.join(np.array(model_parameters)[fix_idx:, 0]))
print('white list: ', ', '.join(white_list))
for idx, (name, i) in enumerate(model.named_parameters()):
# 这里测试得到 bert 本身前面 parameters 个数有 199 个
if idx < fix_idx:
i.requires_grad = False
# 白名单的 layer 不进行 fix
if name in white_list:
i.requires_grad = True
model.to(args['device'])
if torch.cuda.device_count() > 1 and args['use_multi_gpu']:
print("{} GPUs are available. Let's use them.".format(
torch.cuda.device_count()))
# model = torch.nn.DataParallel(model)
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[0, 1],
output_device=0)
optimizer = optim.Adam(filter(lambda p: p.requires_grad,
model.parameters()),
lr=args['lr'])
# gpu_track.track()
acc = 0.0 # 准确率,以最高的一次为准,train_pred_opt 与 test_pred_opt 也是在准确率最高情况下算得
train_pred_opt = None
test_pred_opt = None
writer = None
if args['is_save_logs']:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(os.path.join(args['logs_dir'], str(time.time())))
start_time = time.time()
# 先对预训练模型后几层进行训练
print('start train...')
for epoch in range(args['epochs']):
print('Epoch {}/{}'.format(epoch + 1, args['epochs']))
# np.random.shuffle(train_data) # 每个 ep 打乱 train data 顺序
# 每一次的训练从之前最优时候开始
# load_checkpoint(model=model, args=args, test_acc=acc)
train_loss, train_acc, train_pred = train(model, train_data, optimizer,
args)
test_loss, test_acc, test_pred = test(model, test_data, args)
if test_acc > acc:
# 在准确率最高的一次 finetune 中保存预测信息
acc = test_acc
train_pred_opt = train_pred
test_pred_opt = test_pred
# 保存效果最好的一次的权重,便于以后再利用
save_checkpoint(model=model, args=args, test_acc=acc)
for attr in white_list:
# 打印所有在白名单中的候选变量
model_tree = model
for key in attr.split('.'):
if hasattr(model_tree, key):
model_tree = getattr(model_tree, key)
else:
break
else:
print(attr, model_tree)
if writer is not None:
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Accuracy/train', train_acc, epoch)
writer.add_scalar('Loss/test', test_loss, epoch)
writer.add_scalar('Accuracy/test', test_acc, epoch)
for p in model.parameters():
p.requires_grad = True
if False:
# 这段是是否使用 trial data 来执行 finetune
trial_data = get_all_features_from_task_2(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Trial Data/taskB_trial_data.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Trial Data/taskB_trial_answer.csv',
RobertaTokenizer.from_pretrained('roberta-large'), args['max_seq_length'],
with_gnn=True,
with_k_bert=True)
trial_data = create_datasets_with_kbert(trial_data, shuffle=True)
trial_data = MyDataLoader(trial_data, batch_size=args['batch_size'])
trial_data = list(trial_data)
optimizer = optim.Adam(model.parameters(), lr=args['fine_tune_lr'], eps=args['adam_epsilon'])
load_checkpoint(model=model, args=args, test_acc=acc)
# 整体进行第二次 fine-tune
print('start fine-tune v1...')
for epoch in range(4):
print('Epoch {}/{}'.format(epoch + 1, 4))
# os.system('nvidia-smi')
# os.system('free -m')
# np.random.shuffle(trial_data) # 每个 ep 打乱 train data 顺序
# 每一次的训练从之前最优时候开始
# load_checkpoint(model=model, args=args, test_acc=acc)
train_loss, train_acc, train_pred = train(model, trial_data, optimizer,
args)
test_loss, test_acc, test_pred = test(model, test_data, args)
if test_acc > acc:
# 在准确率最高的一次 finetune 中保存预测信息
acc = test_acc
train_pred_opt = train_pred
test_pred_opt = test_pred
# 保存效果最好的一次的权重,便于以后再利用
save_checkpoint(model=model, args=args, test_acc=acc)
for attr in white_list:
# 打印所有在白名单中的候选变量
model_tree = model
for key in attr.split('.'):
if hasattr(model_tree, key):
model_tree = getattr(model_tree, key)
else:
break
else:
print(attr, model_tree)
optimizer = optim.Adam(model.parameters(), lr=args['fine_tune_lr'], eps=args['adam_epsilon'])
# 加载 train 时候最优的权重
load_checkpoint(model=model, args=args, test_acc=acc)
# 整体进行 fine-tune
print('start fine-tune v2...')
for epoch in range(args['fine_tune_epochs']):
print('Epoch {}/{}'.format(epoch + 1, args['fine_tune_epochs']))
# np.random.shuffle(train_data) # 每个 ep 打乱 train data 顺序
# 每一次的训练从之前最优时候开始
# load_checkpoint(model=model, args=args, test_acc=acc)
train_loss, train_acc, train_pred = train(model, train_data, optimizer,
args)
test_loss, test_acc, test_pred = test(model, test_data, args)
if test_acc > acc:
# 在准确率最高的一次 finetune 中保存预测信息
acc = test_acc
train_pred_opt = train_pred
test_pred_opt = test_pred
# 保存效果最好的一次的权重,便于以后再利用
save_checkpoint(model=model, args=args, test_acc=acc)
for attr in white_list:
# 打印所有在白名单中的候选变量
model_tree = model
for key in attr.split('.'):
if hasattr(model_tree, key):
model_tree = getattr(model_tree, key)
else:
break
else:
print(attr, model_tree)
if writer is not None:
writer.add_scalar('Loss/fine-tune train', train_loss, epoch)
writer.add_scalar('Accuracy/fine-tune train', train_acc, epoch)
writer.add_scalar('Loss/fine-tune test', test_loss, epoch)
writer.add_scalar('Accuracy/fine-tune test', test_acc, epoch)
print('Total Time: ', time.time() - start_time)
if writer is not None:
writer.close()
# 加载最优时候的模型
load_checkpoint(model=model, args=args, test_acc=acc)
return acc, (train_pred_opt, test_pred_opt)
# %%
def simple_split(dataset):
"""
按照 split_rate 分成训练集与验证集
:param dataset:
:return:
"""
train_loader = Data.DataLoader(dataset=Data.TensorDataset(
dataset[:int(len(dataset) * args['split_rate'])][0],
dataset[:int(len(dataset) * args['split_rate'])][1]),
batch_size=args['batch_size'],
shuffle=True,
**kwargs)
test_loader = Data.DataLoader(dataset=Data.TensorDataset(
dataset[int(len(dataset) * args['split_rate']):][0],
dataset[int(len(dataset) * args['split_rate']):][1]),
batch_size=args['test_batch_size'],
shuffle=True,
**kwargs)
# 下面这两行并不是必须的,只是手动加载进内存让后续的读取速度快一些
global train_data, test_data
train_data = list(train_loader)
test_data = list(test_loader)
train_and_finetune(model, train_data, test_data, args)
# %%
def simple_split_with_graph(features):
data_loader = MyDataLoader(features,
batch_size=args['batch_size'])
global train_data, test_data
train_data = data_loader[:int(len(data_loader) * args['split_rate'])]
test_data = data_loader[int(len(data_loader) * args['split_rate']):]
train_and_finetune(model, train_data, test_data, args)
# %%
def get_features(*functions):
"""合并多个 list,主要用途(合并多种不同的数据集进行训练)"""
features = []
for i in functions:
features.extend(i)
return features
# %%
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
from config import args
print('Msg: ', 'Roberta TaskB')
print(args)
if args['use_multi_gpu']:
dist.init_process_group(backend='nccl')
# logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
# Load pre-trained model (weights)
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# tokenizer.add_special_tokens({'cls_token': '[CLS]', 'sep_token': '[SEP]'})
# config = GPT2Config.from_pretrained('gpt2')
# tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# config = BertConfig.from_json_file(
# 'pre_weights/bert-base-uncased_config.json')
tokenizer = RobertaTokenizer.from_pretrained('roberta-large')
config = RobertaConfig.from_pretrained('roberta-large')
# tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v1')
# config = AlbertConfig.from_pretrained('albert-xxlarge-v1')
config.hidden_dropout_prob = 0.2
config.attention_probs_dropout_prob = 0.2
model = None
train_data = test_data = optimizer = None
# tokenizer = BertTokenizer.from_pretrained('bert-large-uncased')
# config = BertConfig.from_pretrained('bert-large-uncased')
# model = BertForMultipleChoice.from_pretrained('pre_weights/bert-large-cased_model.bin', config=config)
# Set the model in evaluation mode to desactivate the DropOut modules
# This is IMPORTANT to have reproductible results during evaluation!
kwargs = {
'num_workers': args['data_loader_num_workers'],
'pin_memory': True
} if args['use_cuda'] else {}
# features = get_features(get_features_from_commonsenseQA(tokenizer, args['max_seq_length'], 5))
# features = get_features(get_features_from_commonsenseQA_solo(tokenizer, args['max_seq_length']))
# dataset = create_datasets_with_kbert(features, shuffle=True)
# simple_split_with_graph(dataset)
# torch.save(model.state_dict(), 'checkpoints/commonsenseQA_pretrain_temp.pth')
with_gnn = False # 是否加载 GNN
with_k_bert = False # 是否加载 K-BERT
print('with_gnn: ', 'Yes' if with_gnn else 'No')
print('with_k_bert: ', 'Yes' if with_k_bert else 'No')
semantic_features = get_features(
# get_features_from_task_2(
# # subtaskB_shuffled_aug_data_all 是 training data 通过 TaskC 增强数据以后的结果,已 shuffle
# 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Aug Data/subtaskB_shuffled_aug_data_all.csv',
# 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Aug Data/subtaskB_shuffled_aug_answers_all.csv',
# tokenizer, args['max_seq_length']),
# get_all_features_from_task_1(
# # Union Data 是 training data 与 trial data 合并以后去重的结果
# 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Union Data/subtaskA_data_all.csv',
# 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Union Data/subtaskA_answers_all.csv',
# tokenizer, args['max_seq_length'],
# with_gnn=with_gnn,
# with_k_bert=with_k_bert),
get_all_features_from_task_2(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskB_data_all.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskB_answers_all.csv',
tokenizer,
args['max_seq_length'],
with_gnn=with_gnn,
with_k_bert=with_k_bert),
)
# joblib.dump(semantic_features, 'pre_weights/semantic_graph_features_union_data.joblib')
# joblib.dump(semantic_features, 'pre_weights/semantic_graph_kbert_features_union_data.joblib')
# print('get semantic_features from pre_weights/semantic_graph_features_union_data.joblib')
# semantic_features = joblib.load('pre_weights/semantic_graph_features_union_data.joblib')
# print('get semantic_features from pre_weights/semantic_graph_kbert_features_union_data.joblib')
# semantic_features = joblib.load('pre_weights/semantic_graph_kbert_features_union_data.joblib')
# from utils.gpu_mem_track import MemTracker
# import inspect
#
# frame = inspect.currentframe()
# gpu_track = MemTracker(frame)
# dataset = create_datasets_with_graph(semantic_features, graph_features, shuffle=True)
# dataset = create_datasets_with_kbert(semantic_features, shuffle=True)
# simple_split_with_graph(dataset)
# args['fine_tune_lr'] *= 10
# args['lr'] *= 10
# simple_split_with_graph(dataset)
# k_fold_cross_validation(dataset, k=5)
# 这里测试利用 TaskC 增强 TaskB 效果
# 源数据中已经 shuffle,前面为 training data,后面为 test data,因此这里不能再 shuffle
# args['split_rate'] = 10000 * args['split_rate'] * 3.0 / len(semantic_features)
# print('split rate: ', args['split_rate'])
# dataset = create_datasets(semantic_features, shuffle=False)
# simple_split(dataset)
dev_features = get_all_features_from_task_2(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskB_dev_data.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskB_gold_answers.csv',
tokenizer, args['max_seq_length'],
with_gnn=with_gnn,
with_k_bert=with_k_bert)
test_features = get_all_features_from_task_2(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskB_test_data.csv',
None,
tokenizer, args['max_seq_length'],
with_gnn=with_gnn,
with_k_bert=with_k_bert)
# joblib.dump(dev_features, 'pre_weights/semantic_graph_features_dev_data.joblib')
# joblib.dump(test_features, 'pre_weights/semantic_graph_features_test_data.joblib')
# joblib.dump(dev_features, 'pre_weights/semantic_graph_kbert_features_dev_data.joblib')
# joblib.dump(test_features, 'pre_weights/semantic_graph_kbert_features_test_data.joblib')
# dev_features = joblib.load('pre_weights/semantic_graph_features_dev_data.joblib')
# test_features = joblib.load('pre_weights/semantic_graph_features_test_data.joblib')
# dev_features = joblib.load('pre_weights/semantic_graph_kbert_features_dev_data.joblib')
# test_features = joblib.load('pre_weights/semantic_graph_kbert_features_test_data.joblib')
train_dataset = create_datasets_with_kbert(semantic_features, shuffle=True)
dev_dataset = create_datasets_with_kbert(dev_features, shuffle=False)
test_dataset = create_datasets_with_kbert(test_features, shuffle=False)
if args['use_multi_gpu']:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_data = torch.utils.data.DataLoader(train_dataset, batch_size=args['batch_size'], sampler=train_sampler)
dev_sampler = torch.utils.data.distributed.DistributedSampler(dev_dataset)
dev_data = torch.utils.data.DataLoader(dev_dataset, batch_size=args['test_batch_size'], sampler=dev_sampler)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
test_data = torch.utils.data.DataLoader(test_dataset, batch_size=args['test_batch_size'], sampler=test_sampler)
else:
# train_data = torch.utils.data.DataLoader(train_dataset, batch_size=args['batch_size'])
# test_data = torch.utils.data.DataLoader(test_dataset, batch_size=args['test_batch_size'])
train_data = MyDataLoader(train_dataset, batch_size=args['batch_size'])
dev_data = MyDataLoader(dev_dataset, batch_size=args['test_batch_size'])
test_data = MyDataLoader(test_dataset, batch_size=args['test_batch_size'])
train_data = list(train_data)
dev_data = list(dev_data)
test_data = list(test_data)
print('train_data len: ', len(train_data))
print('dev_data len: ', len(dev_data))
print('test_data len: ', len(test_data))
model = None
dev_acc, (train_pred_opt, dev_pred_opt) = train_and_finetune(model, train_data, dev_data, args)
print('Dev acc: ', dev_acc)
_, _, test_pred = test(model, test_data, args)
predict_csv_path = 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskB_test_data.csv'
ans = test_pred.softmax(dim=1).argmax(dim=1).cpu().numpy()
# for taskB,将序号 012 转换为 ABC
ans = np.array(list(map(chr, ans + 65)))
globals()['ans'] = ans
data_all = pd.DataFrame(np.stack((pd.read_csv(predict_csv_path).values[:, 0], ans)).T, columns=['id', 'label'])
data_all.to_csv(
os.path.join(args['logs_dir'], 'answers_{}.csv'.format(args['exec_time'])),
columns=['id', 'label'],
header=False,
index=False
)