forked from akucyi/CPM_CONN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCPM_internal.m
executable file
·318 lines (300 loc) · 13 KB
/
CPM_internal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
function [R,P,pred_obs]=CPM_internal(all_mats,all_behav,dataset,...
kfolds,r_method,pthresh,part_var,motion_var,outname,train_mode)
% Connectome-based predictive modeling: internal (within-dataset) validation
% written by Aaron Kucyi
% adapted from Shen et al. (2017 Nature Protocols)
% INPUTS:
% all_mats (required) : ROI x ROI x subjects FC matrix (or single vector for one ROI/edge)
% all_behav (required) : behavioral score vector
% dataset (required) : name of dataset folder name
% kfolds (optional) : number of cross-validation folds (default = leave one out)
% r_method (optional) : correlation method (1 = Pearson (default); 2 = spearman;
% 3 = robust regress; 4 = Pearson partial using part_var;
% 5 = Spearman partial using part_var
% pthresh (optional) : p threshold for feature selection (default = 0.01)
% part_var (optional) : partial corr variable (leave blank if not using)
% motion_var (optional) : head motion as FD (if included, removes subjects with FD>0.15)
% outname (optional) : name for output files (default = 'test')
% train_mode (optional) : 1 = do cross-validation (default); 2 = use all subjects for
% training in a single fold and save linear regression parameters
% OUTPUTS:
% R : r values for predicted vs observed behav (R_pos R_neg R_pos-neg)
% P : p values for predicted vs observed behav (P_pos P_neg P_pos-neg)
% pred_obs : predicted behav observed behav (pos: columns 1-2,
% neg: columns 3-4, pos-neg: columns 5-6)
% positive and negative masks are saved in cpm_results within dataset folder
%% Settings
FD_thr=.20; % cutoff for removing subjects based on FD
global globalDataDir; % this must be set within startup.m
datapath=[globalDataDir];
if nargin<5 || isempty(r_method)
r_method=1;
end
if nargin<8 || isempty(motion_var)
motion_var=[];
end
if nargin<7 || isempty(part_var)
part_var=[];
end
%% remove subjects with missing behavioral data
missing=isnan(all_behav);
all_mats(:,:,missing)=[];
if ~isempty(motion_var)
motion_var(missing)=[];
end
if ~isempty(part_var)
part_var(missing)=[];
end
all_behav(missing)=[];
%% remove high-motion subjects
if ~isempty(motion_var)
rm_subs=find(motion_var>FD_thr);
if r_method~=3
display(['removing ' num2str(length(rm_subs)) ' subjects due to high motion']);
all_behav(rm_subs)=[];
all_mats(:,:,rm_subs)=[];
if ~isempty(part_var)
part_var(rm_subs)=[];
end
end
end
%% Defaults
no_sub=length(all_behav);
if nargin<4 || isempty(kfolds)
kfolds=no_sub;
end
if nargin<6 || isempty(pthresh)
pthresh=0.01;
end
if nargin<9 || isempty(outname)
outname='test';
end
if nargin<10 || isempty(train_mode)
train_mode=1;
end
%% set parameters
if train_mode==1
no_sub=length(all_behav);
elseif train_mode==2
no_sub=1; % set to one loop if using all subjects for training
end
if ndims(all_mats)==3
no_node=size(all_mats,1);
sub_trials=1:size(all_mats,3);
else % for single var
no_node=1;
sub_trials=1:length(all_mats);
end
behav_pred_pos=zeros(no_sub,1);
behav_pred_neg=zeros(no_sub,1);
randinds=randperm(no_sub);
ksample=floor(no_sub/kfolds);
pred_observed_posneg=[]; pred_observed_pos=[]; pred_observed_neg=[];
%% Run cross-validation folds
if train_mode==2
kfolds=1;
end
for leftout=1:kfolds
if train_mode==1
display(['Running fold ' num2str(leftout)]);
train_mats = all_mats;
train_behav=all_behav;
if kfolds==no_sub % leave one subject out
if ndims(all_mats)==3
train_mats(:,:,leftout)=[];
else % for single ROI/edge
train_vcts=train_mats;
train_vcts(leftout)=[];
end
train_behav(leftout)=[];
else % kfolds
si=1+((leftout-1)*ksample);
fi=si+ksample-1;
testinds=randinds(si:fi);
traininds=setdiff(randinds,testinds);
train_mats(:,:,testinds)=[];
train_behav(testinds)=[];
end
train_vcts=reshape(train_mats,[],size(train_mats,3));
elseif train_mode==2
display(['Using all subjects to estimate model parameters']);
train_mats = all_mats;
train_vcts=reshape(train_mats,[],size(train_mats,3));
train_behav=all_behav;
end
% correlate all edges with behavior (in training data)
if r_method==1 || r_method==4
if ndims(all_mats)==3
[r_mat,p_mat]=corr(train_vcts',train_behav,'rows','pairwise');
r_mat=reshape(r_mat,no_node,no_node);
p_mat=reshape(p_mat,no_node,no_node);
else % for single var
[r_mat,p_mat]=corr(train_vcts,train_behav,'rows','pairwise');
end
elseif r_method==2 || r_method==5
if ndims(all_mats)==3
[r_mat,p_mat]=corr(train_vcts',train_behav,'type','Spearman','rows','pairwise');
r_mat=reshape(r_mat,no_node,no_node);
p_mat=reshape(p_mat,no_node,no_node);
else % for single var
[r_mat,p_mat]=corr(train_vcts,train_behav,'type','Spearman','rows','pairwise');
end
elseif r_method==3 % robust regression
edge_no=size(train_vcts,1);
r_mat=zeros(1,edge_no);
p_mat=zeros(1,edge_no);
for edge_i = 1:edge_no
[~,stats]=robustfit(train_vcts(edge_i,:)',train_behav);
cur_t = stats.t(2);
r_mat(edge_i) = sign(cur_t)*sqrt(cur_t^2/no_trials_all-1-2+cur_t^2);
p_mat(edge_i) = 2*tcdf(cur_t, no_trials_all-1-2); % two-tailed
end
r_mat=reshape(r_mat,no_node,no_node);
p_mat=reshape(p_mat,no_node,no_node);
end
% set threshold and define masks (in training data)
if ndims(all_mats==3)
pos_mask=zeros(no_node,no_node);
neg_mask=zeros(no_node,no_node);
pos_edges=find(r_mat>0 & p_mat < pthresh);
neg_edges=find(r_mat<0 & p_mat < pthresh);
pos_mask(pos_edges)=1;
neg_mask(neg_edges)=1;
pos_mask_allfolds(:,:,leftout)=pos_mask;
neg_mask_allfolds(:,:,leftout)=neg_mask;
end
% get sum of all edges in train subs
if ndims(all_mats==3)
if train_mode==1
train_sumpos=zeros(size(train_mats,3),1); % -1 is for leave one out; edit for k-fold
train_sumneg=zeros(size(train_mats,3),1);
train_sumposneg=zeros(size(train_mats,3),1);
elseif train_mode==2
train_sumpos=zeros(size(all_mats,3),1);
train_sumneg=zeros(size(all_mats,3),1);
train_sumposneg=zeros(size(all_mats,3),1);
end
for ss=1:size(train_sumpos)
train_sumpos(ss) = nansum(nansum(train_mats(:,:,ss).*pos_mask))/2;
train_sumneg(ss) = nansum(nansum(train_mats(:,:,ss).*neg_mask))/2;
end
train_sumposneg = train_sumpos-train_sumneg;
end
% build model on train subjects
if ndims(all_mats)==3
fit_pos=polyfit(train_sumpos(~isnan(train_behav)),train_behav(~isnan(train_behav)),1);
fit_neg=polyfit(train_sumneg(~isnan(train_behav)),train_behav(~isnan(train_behav)),1);
fit_posneg=polyfit(train_sumposneg(~isnan(train_behav)),train_behav(~isnan(train_behav)),1);
else % for single ROI/edge and positive corr only
fit_pos=polyfit(train_vcts(~isnan(train_vcts)),train_behav(~isnan(train_behav)),1);
end
% run model prediction on test subject
if train_mode==1
behav_pred_pos=[]; behav_pred_neg=[]; behav_pred_posneg=[];
if ndims(all_mats)==3
if kfolds==no_sub % leave-one-out
test_mat=all_mats(:,:,leftout);
test_behav=all_behav(leftout);
test_sumpos(leftout)=nansum(nansum(test_mat.*pos_mask))/2;
test_sumneg(leftout)=nansum(nansum(test_mat.*neg_mask))/2;
test_sum_posneg(leftout)=squeeze(test_sumpos(leftout))-squeeze(test_sumneg(leftout));
behav_pred_pos=fit_pos(1)*test_sumpos(leftout) + fit_pos(2);
behav_pred_neg=fit_neg(1)*test_sumneg(leftout) + fit_neg(2);
behav_pred_posneg=fit_posneg(1)*test_sum_posneg(leftout) + fit_posneg(2);
if ~isempty(part_var)
test_part_var=part_var(leftout);
end
else % kfolds
test_mat=all_mats(:,:,testinds);
test_behav=all_behav(testinds);
for j=1:length(test_behav)
test_sumpos(j)=nansum(nansum(test_mat(:,:,j).*pos_mask))/2;
test_sumneg(j)=nansum(nansum(test_mat(:,:,j).*neg_mask))/2;
test_sum_posneg(j)=squeeze(test_sumpos(j))-squeeze(test_sumneg(j));
behav_pred_pos(j,:)=fit_pos(1)*test_sumpos(j) + fit_pos(2);
behav_pred_neg(j,:)=fit_neg(1)*test_sumneg(j) + fit_neg(2);
behav_pred_posneg(j,:)=fit_posneg(1)*test_sum_posneg(j) + fit_posneg(2);
if ~isempty(part_var)
test_part_var=part_var(testinds);
end
end
end
if ~isempty(part_var)
pred_observed_posneg=[pred_observed_posneg; behav_pred_posneg test_behav test_part_var];
pred_observed_pos=[pred_observed_pos; behav_pred_pos test_behav test_part_var];
pred_observed_neg=[pred_observed_neg; behav_pred_neg test_behav test_part_var];
else
pred_observed_posneg=[pred_observed_posneg; behav_pred_posneg test_behav];
pred_observed_pos=[pred_observed_pos; behav_pred_pos test_behav];
pred_observed_neg=[pred_observed_neg; behav_pred_neg test_behav];
end
else % for single ROI and leave one out
test_mat=all_mats(leftout);
for j=1:length(leftout)
behav_pred_pos(leftout,:)=fit_pos(1)*test_mat + fit_pos(2);
end
end
end
end
% compare predicted vs. observed scores across subjects
if train_mode==1
if r_method==1 || r_method==2 || r_method==3
if ndims(all_mats)==3
[R_pos, P_pos] = corr(pred_observed_pos(:,1),pred_observed_pos(:,2),'rows','pairwise');
[R_neg, P_neg] = corr(pred_observed_neg(:,1),pred_observed_neg(:,2),'rows','pairwise');
[R_posneg, P_posneg] = corr(pred_observed_posneg(:,1),pred_observed_posneg(:,2),'rows','pairwise');
else % for single ROI and positive corr
[R_posneg(leftout), P_posneg(leftout)] = corr(behav_pred_pos,behav_test,'rows','pairwise');
end
elseif r_method==4 % partial Pearson
[R_pos, P_pos] = partialcorr(pred_observed_pos(:,1),pred_observed_pos(:,2),pred_observed_pos(:,3),'rows','pairwise');
[R_neg, P_neg] = partialcorr(pred_observed_neg(:,1),pred_observed_neg(:,2),pred_observed_neg(:,3),'rows','pairwise');
[R_posneg, P_posneg] = partialcorr(pred_observed_posneg(:,1),pred_observed_posneg(:,2),pred_observed_posneg(:,3),'rows','pairwise');
elseif r_method==5 % partial Spearman
[R_pos, P_pos] = partialcorr(pred_observed_pos(:,1),pred_observed_pos(:,2),pred_observed_pos(:,3),'type','Spearman','rows','pairwise');
[R_neg, P_neg] = partialcorr(pred_observed_neg(:,1),pred_observed_neg(:,2),pred_observed_neg(:,3),'type','Spearman','rows','pairwise');
[R_posneg, P_posneg] = partialcorr(pred_observed_posneg(:,1),pred_observed_posneg(:,2),pred_observed_posneg(:,3),'type','Spearman','rows','pairwise');
end
R=[R_pos R_neg R_posneg];
P=[P_pos P_neg P_posneg];
pred_obs=[pred_observed_pos,pred_observed_neg,pred_observed_posneg];
end
% save linear regression parameters (when using all subjects for training),
% positive mask and negative mask
mkdir([datapath filesep dataset filesep 'cpm_results']);
savepath=[datapath filesep dataset filesep 'cpm_results'];
if train_mode==2
cpm.fit_posneg=fit_posneg; cpm.fit_pos=fit_pos; cpm.fit_neg=fit_neg;
cpm.pos_mask=pos_mask; cpm.neg_mask=neg_mask;
save([savepath filesep outname '_cpm'],'cpm');
save([savepath filesep 'pos_mask_' outname '.txt'],'pos_mask','-ascii');
save([savepath filesep 'neg_mask_' outname '.txt'],'neg_mask','-ascii');
R_posneg=[]; P_posneg=[]; behav_pred_pos=[]; R=[]; P=[];
end
% find positive and negative edges with overlap across 90% of all folds, save
if ndims(all_mats)==3 && train_mode==1
pos_mask_overall=NaN(size(pos_mask_allfolds,1),size(pos_mask_allfolds,2));
for i=1:size(pos_mask_allfolds,2)
for j=1:size(pos_mask_allfolds,2)
if sum(pos_mask_allfolds(i,j,:))/size(pos_mask_allfolds,3)>.9
pos_mask_overall(i,j)=1;
else
pos_mask_overall(i,j)=0;
end
end
end
save([savepath filesep 'pos_mask_90percFolds_' outname '.txt'],'pos_mask_overall','-ascii');
save([savepath filesep 'pos_mask_90percFolds' outname],'pos_mask_allfolds');
neg_mask_overall=NaN(size(neg_mask_allfolds,1),size(neg_mask_allfolds,2));
for i=1:size(neg_mask_allfolds,2)
for j=1:size(neg_mask_allfolds,2)
if sum(neg_mask_allfolds(i,j,:))/size(neg_mask_allfolds,3)>.9
neg_mask_overall(i,j)=1;
else
neg_mask_overall(i,j)=0;
end
end
end
save([savepath filesep 'neg_mask_90percFolds_' outname '.txt'],'neg_mask_overall','-ascii');
save([savepath filesep 'neg_mask_90percFolds_' outname],'neg_mask_allfolds');
end