-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
264 lines (205 loc) · 7.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# coding:utf-8
"""
Filename: app.py
Author: @DvdNss
Created on 12/10/2021
"""
import csv
import os.path
import time
import cv2
import gdown
import numpy as np
import streamlit as st
import torch
def load_classes(csv_reader):
"""
Load classes from csv.
:param csv_reader: csv
:return:
"""
result = {}
for line, row in enumerate(csv_reader):
line += 1
try:
class_name, class_id = row
except ValueError:
raise (ValueError('line {}: format should be \'class_name,class_id\''.format(line)))
class_id = int(class_id)
if class_name in result:
raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name))
result[class_name] = class_id
return result
@st.cache
def draw_caption(image, box, caption):
"""
Draw caption and bbox on image.
:param image: image
:param box: bounding box
:param caption: caption
:return:
"""
b = np.array(box).astype(int)
cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 2)
cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1)
@st.cache
def load_labels():
"""
Loads labels.
:return:
"""
with open("dataset/labels.csv", 'r') as f:
classes = load_classes(csv.reader(f, delimiter=','))
labels = {}
for key, value in classes.items():
labels[value] = key
return labels
def download_models(ids):
"""
Download all models.
:param ids: name and links of models
:return:
"""
# Download model from drive if not stored locally
with st.spinner('Downloading models, this may take a minute...'):
for key in ids:
if not os.path.isfile(f"model/{key}.pt"):
url = f"https://drive.google.com/uc?id={ids[key]}"
gdown.download(url=url, output=f"model/{key}.pt")
@st.cache(suppress_st_warning=True)
def load_model(model_path, prefix: str = 'model/'):
"""
Load model.
:param model_path: path to inference model
:param prefix: model prefix if needed
:return:
"""
# Load model
if torch.cuda.is_available():
model = torch.load(f"{prefix}{model_path}.pt").to('cuda')
else:
model = torch.load(f"{prefix}{model_path}.pt", map_location=torch.device('cpu'))
model = model.module.cpu()
model.training = False
model.eval()
return model
def process_img(model, image, labels, caption: bool = True):
"""
Process img given a model.
:param caption: whether to use captions or not
:param image: image to process
:param model: inference model
:param labels: given labels
:return:
"""
image_orig = image.copy()
rows, cols, cns = image.shape
smallest_side = min(rows, cols)
# Rescale the image
min_side = 608
max_side = 1024
scale = min_side / smallest_side
# Check if the largest side is now greater than max_side
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
# Resize the image with the computed scale
image = cv2.resize(image, (int(round(cols * scale)), int(round((rows * scale)))))
rows, cols, cns = image.shape
pad_w = 32 - rows % 32
pad_h = 32 - cols % 32
new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
image = new_image.astype(np.float32)
image /= 255
image -= [0.485, 0.456, 0.406]
image /= [0.229, 0.224, 0.225]
image = np.expand_dims(image, 0)
image = np.transpose(image, (0, 3, 1, 2))
with torch.no_grad():
image = torch.from_numpy(image)
if torch.cuda.is_available():
image = image.cuda()
st = time.time()
scores, classification, transformed_anchors = model(image.float())
elapsed_time = time.time() - st
idxs = np.where(scores.cpu() > 0.5)
for j in range(idxs[0].shape[0]):
bbox = transformed_anchors[idxs[0][j], :]
x1 = int(bbox[0] / scale)
y1 = int(bbox[1] / scale)
x2 = int(bbox[2] / scale)
y2 = int(bbox[3] / scale)
label_name = labels[int(classification[idxs[0][j]])]
colors = {
'with_mask': (0, 255, 0),
'without_mask': (255, 0, 0),
'mask_weared_incorrect': (190, 100, 20)
}
cap = '{}'.format(label_name) if caption else ''
draw_caption(image_orig, (x1, y1, x2, y2), cap)
cv2.rectangle(image_orig, (x1, y1), (x2, y2), color=colors[label_name], thickness=2)
cv2.putText(image_orig,
f"{'{:.1f}'.format(1 / float(elapsed_time))}{' cuda:' + str(torch.cuda.is_available()).lower()}",
fontScale=1, fontFace=cv2.FONT_HERSHEY_PLAIN, org=(10, 20), color=(0, 255, 0))
return image_orig
# Page config
st.set_page_config(layout="centered")
st.sidebar.title("Face Mask Detection")
# Models drive ids
ids = {
'resnet50_20': '17c2kseAC3y62IwaRQW4m1Vc-7o3WjPdh',
# 'resnet50_29': '1E_IOIuE5OpO4tQgTbXjdAmXR-9BCxxmT',
'resnet152_20': '1oUHqE_BgXehopdicuvPCGOxnwAdlDkEY',
}
# Download all models from drive
download_models(ids)
page = st.sidebar.selectbox('', options=('Description', 'Inference', 'Webcam'), index=0, help='Choose where to go. ')
# Model selection
labels = load_labels()
model_path = st.sidebar.selectbox('Choose a model', options=[k for k in ids], index=0)
model = load_model(model_path=model_path) if model_path != '' else None
if page == 'Inference':
# Display example selection
index = st.number_input('', min_value=0, max_value=852, value=495, help='Choose an image. ')
# Whether to use precomputed img or not
cached = st.checkbox('Use cached image (precomputed with gpu)', value=True)
left, right = st.columns([3, 1])
if not cached:
# Get corresponding image and transform it
image = cv2.imread(f'dataset/validation/image/maksssksksss{str(index)}.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Process img
with st.spinner('Please wait while the image is being processed... This may take a while. '):
image = process_img(model, image, labels, caption=False)
else:
image = cv2.imread(f"dataset/validation/{model_path.split('_')[0]}/maksssksksss{str(index)}.jpg")
left.image(image)
# Write labels dict and device on right
right.write({
'green': 'with_mask',
'orange': 'mask_weared_incorrect',
'red': 'without_mask'
})
device = 'CPU' if not torch.cuda.is_available() else 'GPU'
right.write(f"CUDA: {torch.cuda.is_available()} ({device})")
elif page == "Webcam":
try:
# Get webcam feed
camera = cv2.VideoCapture(0)
# Prepare video container
video = st.image([])
while page == "Webcam":
_, frame = camera.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
video.image(process_img(model, frame, labels, caption=True))
except:
st.warning(
'Unable to detect corresponding device. Note that this feature isn\'t available on Streamlit Cloud. ')
elif page == 'Description':
st.title('Face Mask Detection')
st.image('resources/ex.jpg', caption="[GitHub](https://github.com/DvdNss/FaceMaskDetection)")
st.markdown(
"This project aims to create a Face Mask Detection model to visually detect facemasks on images and videos. "
"We operate with 3 labels: \n\n * _with_mask_ \n * _without_mask_\n * _mask_weared_incorrect_ \n\nThe dataset "
"contains approximately 2500 hand-collected and hand-labelled images.")