-
-
Notifications
You must be signed in to change notification settings - Fork 213
/
Copy pathlearn.py
419 lines (353 loc) · 18.7 KB
/
learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
.. module:: learn
:platform: Unix
:synopsis: the top-level submodule of Dragonfire that contains the classes related to Dragonfire's learning ability.
.. moduleauthor:: Mehmet Mert Yıldıran <mert.yildiran@bil.omu.edu.tr>
"""
import collections # Imported to support ordered dictionaries in Python
from tinydb import TinyDB, Query # TinyDB is a lightweight document oriented database
from os.path import expanduser # Imported to get the home directory
from dragonfire.config import Config # Credentials for the database connection
from dragonfire.database import Fact # Submodule of Dragonfire module that contains the database schema
from sqlalchemy.orm.exc import NoResultFound # the Python SQL toolkit and Object Relational Mapper
class Learner():
"""Class to provide the learning ability.
"""
def __init__(self, nlp):
"""Initialization method of :class:`dragonfire.learn.Learner` class.
Args:
nlp: :mod:`spacy` model instance.
"""
self.pronouns = collections.OrderedDict() # Create an ordered dictionary
self.pronouns["I"] = "YOU"
self.pronouns["ME"] = "YOU"
self.pronouns["MY"] = "YOUR"
self.pronouns["MINE"] = "YOURS"
self.pronouns["MYSELF"] = "YOURSELF"
self.pronouns["OUR"] = "YOUR"
self.pronouns["OURS"] = "YOURS"
self.pronouns["OURSELVES"] = "YOURSELVES"
self.pronouns["WE"] = "YOU"
self.pronouns["US"] = "YOU"
self.inv_pronouns = collections.OrderedDict() # Create an ordered dictionary
self.inv_pronouns["YOU"] = "I"
self.inv_pronouns["YOUR"] = "MY"
self.inv_pronouns["YOURS"] = "MINE"
self.inv_pronouns["YOURSELF"] = "MYSELF"
self.inv_pronouns["YOURSELVES"] = "OURSELVES"
self.auxiliaries = collections.OrderedDict() # Create an ordered dictionary
self.auxiliaries["AM"] = "ARE"
self.auxiliaries["'M"] = " ARE"
self.auxiliaries["WAS"] = "WERE"
self.inv_auxiliaries = collections.OrderedDict() # Create an ordered dictionary
self.inv_auxiliaries["ARE"] = "AM"
self.inv_auxiliaries["WERE"] = "WAS"
home = expanduser("~") # Get the home directory of the user
self.db = TinyDB(home + '/.dragonfire_db.json') # This is where we store the database; /home/USERNAME/.dragonfire_db.json
self.nlp = nlp # Load en_core_web_sm, English, 50 MB, default model
self.is_server = False
self.db_session = None
def respond(self, com, is_server=False, user_id=None):
"""Method to respond the user's input/command using learning ability.
Args:
com (str): User's command.
Keyword Args:
is_server (bool): Is Dragonfire running as an API server?
user_id (int): User's ID.
Returns:
str: Response.
.. note::
Entry function for :class:`Learner` class. Dragonfire calls only this function. It does not handle TTS.
"""
self.is_server = is_server
is_public = True
com = self.clean(com)
doc = self.nlp(com) # Command(user's speech) must be decoded from utf-8 to unicode because spaCy only supports unicode strings, self.nlp() handles all parsing
subject = [] # subject list (subjects here usually are; I'M, YOU, HE, SHE, IT, etc.)
types = [] # types of the previous noun phrases
types.append("")
for np in doc.noun_chunks: # Iterate over the noun phrases(chunks) TODO: Cover 'dobj' also; doc = nlp(u'DESCRIBE THE SUN') >>> (u'THE SUN', u'SUN', u'dobj', u'DESCRIBE')
types.append(np.root.dep_)
np_text, is_public = self.detect_pronoun(np.text)
# print("IS_PUBLIC: ", is_public)
# Purpose of this if statement is completing possessive form of nouns
if np.root.dep_ == 'pobj' and types[-2] == 'nsubj': # if it's an object of a preposition and the previous noun phrase's type was nsubj(nominal subject) then (it's purpose is capturing subject like MY PLACE OF BIRTH)
subject.append(np.root.head.text) # append the parent text from syntactic relations tree (example: while nsubj is 'MY PLACE', np.root.head.text is 'OF')
subject.append(np_text) # append the text of this noun phrase (example: while nsubj is 'MY PLACE', np.text is 'BIRTH')
# if it's a nsubj(nominal subject), an attribute or a dobj(direct object) and the previous noun phrase's type was not nsubj(nominal subject)
# ("wh-" words can be considered as nsubj(nominal subject) but they are out of scope. This is why we are excluding them.)
if np.root.dep_ in ['nsubj', 'attr', 'dobj'] and types[-2] not in ['pobj', 'nsubj'] and np.root.tag_ not in ['WDT', 'WP', 'WP$', 'WRB']:
subject.append(np_text) # append the text of this noun phrase
subject = [x.strip() for x in subject]
subject = ' '.join(subject) # concatenate all noun phrases found
if subject: # if the subject is not empty
if subject.upper() in self.inv_pronouns: # pass the learning ability if the user is talking about Dragonfire's itself
return ""
wh_found = False
for word in doc: # iterate over the each word in the given command(user's speech)
if word.tag_ in ['WDT', 'WP', 'WP$', 'WRB']: # check if there is a "wh-" question (we are determining that if it's a question or not, so only accepting questions with "wh-" form)
wh_found = True
if wh_found: # if that's a question
straight = self.db_get(subject, is_public=is_public, user_id=user_id) # get the answer from the database
if straight is None:
return self.db_get(subject, is_public=is_public, user_id=user_id, invert=True) # if nothing found then invert
return straight
else:
verb_found = False
verbtense = None # verbtense is the am/is/are of the main sentence
clause = [] # is the information that we need to acknowledge
verbs = []
for word in doc:
# print(word.text, word.lemma_, word.pos_, word.tag_, word.dep_, word.shape_, word.is_alpha, word.is_stop)
if verb_found: # get the all words comes after the first verb which will be our verbtense
if word.pos_ != 'PUNCT': # exclude punctuations
clause.append(word.text)
if word.pos_ == 'VERB' and word.is_stop and not verb_found: # if that's a verb and verb does not found yet then
verb_found = True # verb is found
verbtense = word.text # append it to verbtense
if word.pos_ == 'VERB':
verbs.append(word.text)
clause = [x for x in clause]
clause = ' '.join(clause).strip() # concatenate the clause
# keywords to order get and remove operations on the database
if any(verb in verbs for verb in self.upper_capitalize(["forget", "remove", "delete", "update"])):
if self.is_server and is_public:
return "I cannot forget a general fact."
return self.db_delete(subject, is_public=is_public, user_id=user_id) # if there is a record about the subject in the database then remove that record and...
if any(verb in verbs for verb in self.upper_capitalize(["define", "explain", "tell", "describe"])):
return self.db_get(subject, is_public=is_public, user_id=user_id)
if verbtense:
return self.db_upsert(subject, verbtense, clause, com, is_public=is_public, user_id=user_id) # set the record to the database
def db_get(self, subject, invert=False, is_public=True, user_id=None):
"""Function to get a record from the database.
Args:
subject (str): Subject that extracted from the user's input/command.
Keyword Args:
invert (bool): Is it invert mode? (swap subject and clause)
is_public (int): Is it a public record? (non-user specific)
user_id (int): User's ID.
Returns:
str: Response.
"""
if self.is_server:
try:
fact = self.invert_fact_and_filter(invert, subject, user_id, is_public)
answer = fact.subject + ' ' + fact.verbtense + ' ' + fact.clause
return self.mirror(answer)
except NoResultFound:
return None
else:
if invert:
result = self.db.search(Query().clause == subject) # make a database search by giving subject string (inverted)
else:
result = self.db.search(Query().subject == subject) # make a database search by giving subject string
if result: # if there is a result
dictionary = {}
for row in result: # iterate over the rows of the result
if row['verbtense'] not in dictionary: # if the verbtense is not in the keys of the dictionary
dictionary[row['verbtense']] = [] # then add it
if row['clause'] not in dictionary[row['verbtense']]: # if the clause is not in the value like; dictionary['is']
dictionary[row['verbtense']].append(row['clause']) # then append the clause
if invert:
answer = row['subject'] # in WHO questions subject is actually the clause so we learn the subject from db
else:
answer = subject # the answer we will return
first_verbtense = False
for key, value in dictionary.items(): # iterate over the dictionary defined and assigned on above
if not first_verbtense: # if the first verbtense assignment does not made yet
answer += ' ' + str(key) # concatenate with a whitespace
first_verbtense = True
else:
answer += ', ' + str(key) # otherwise concatenate with a comma + whitespace
first_clause = False
for clause in value: # iterate over the clauses of the key
if not first_clause: # if the first verbtense assignment does not made yet
answer += ' ' + clause # concatenate with a whitespace
first_clause = True
else:
answer += ' and ' + clause # otherwise concatenate with ' AND '
return self.mirror(answer) # mirror the answer (for example: I'M to YOU ARE)
else:
return None # if there is no result return None
def db_upsert(self, subject, verbtense, clause, com, is_public=True, user_id=None):
"""Function to insert(or update) a record to the database.
Args:
subject (str): Subject that extracted from the user's input/command.
verbtense (str): The am/is/are in the user's input/command.
clause (str): Clause that contains the fact.
com (str): User's command.
Keyword Args:
invert (bool): Is it invert mode? (swap subject and clause)
is_public (int): Is it a public record? (non-user specific)
user_id (int): User's ID.
Returns:
str: Response.
"""
if self.is_server:
fact = self.db_session.query(Fact).filter(Fact.subject == subject, Fact.verbtense == verbtense, Fact.clause == clause, Fact.user_id == user_id, Fact.is_public == is_public).one_or_none()
if not fact:
new_fact = Fact(subject=subject, verbtense=verbtense, clause=clause, user_id=user_id, is_public=is_public)
self.db_session.add(new_fact)
self.db_session.commit()
else:
fact.counter += 1
self.db_session.commit()
else:
if not self.db.search((Query().subject == subject) & (Query().verbtense == verbtense) & (Query().clause == clause)): # if there is no exacty record on the database then
self.db.insert({
'subject': subject,
'verbtense': verbtense,
'clause': clause
}) # insert the given data
return "OK, I get it. " + self.mirror(com) # mirror the command(user's speech) and return it to say
def db_delete(self, subject, is_public=True, user_id=None):
"""Function to delete a record from the database.
Args:
subject (str): Subject that extracted from the user's input/command.
Keyword Args:
is_public (int): Is it a public record? (non-user specific)
user_id (int): User's ID.
Returns:
str: Response.
"""
if self.is_server:
if not is_public and user_id:
fact = self.db_session.query(Fact).filter(Fact.subject == subject, Fact.user_id == user_id).one_or_none()
if not fact:
return "I don't even know anything about " + self.mirror(subject)
else:
fact.delete()
self.db_session.commit()
return "OK, I forgot everything I know about " + self.mirror(subject)
else:
return "I cannot forget a general fact about " + self.mirror(subject)
else:
if self.db.remove(Query().subject == self.fix_pronoun(subject)):
return "OK, I forgot everything I know about " + self.mirror(subject)
else:
return "I don't even know anything about " + self.mirror(subject)
def mirror(self, answer):
"""Function to mirror the answer (for example: I'M to YOU ARE).
Args:
answer (str): Prepared answer that just before the actual return of :func:`respond` method.
Returns:
str: Response.
"""
result = []
types = []
types.append("")
doc = self.nlp(answer)
for token in doc:
types.append(token.lemma_)
# if it's a pronoun or it's an auxiliary that comes right after a pronoun mirror it
if token.lemma_ == "-PRON-" or ((token.lemma_ == "be" or token.dep_ == "aux") and types[-2] == "-PRON-"):
if self.append_word_from_el_mappers(
[
self.pronouns,
self.inv_pronouns,
self.auxiliaries,
self.inv_auxiliaries
],
token.text,
result
):
continue
result.append(token.text.strip())
for i in range(len(result)):
if result[i] == "i":
result[i] = "I"
result = ' '.join(result) # concatenate the result
return result.replace(" '", "'") # fix for situations like "I 'AM", "YOU 'LL"
def fix_pronoun(self, subject): # TODO: Extend the context of this function
"""Pronoun fixer to handle situations like YOU and YOURSELF.
Args:
subject (str): Subject that extracted from the user's input/command.
Returns:
str: Response.
"""
if subject == "yourself":
return "you"
elif subject == "Yourself":
return "You"
elif subject == "YOURSELF":
return "YOU"
else:
return subject
def detect_pronoun(self, noun_chunk):
"""Determine whether user is talking about himself/herself or some other entity.
Args:
noun_chunk (str): Noun phrase.
Returns:
((str), (bool)): Detected pronoun and boolean value depends on the detection.
"""
np_text = ""
is_public = True
doc = self.nlp(noun_chunk)
for token in doc:
if token.lemma_ == "-PRON-":
np_text += ' ' + token.text.lower()
is_public = False
else:
np_text += ' ' + token.text
return np_text.strip(), is_public
def upper_capitalize(self, array):
"""Return capitalized and uppercased versions of the strings inside the given array.
Args:
array ((list) of (str)s): List of strings.
Returns:
(list) of (str)s: List of strings.
"""
result = []
for word in array:
result.append(word)
result.append(word.capitalize())
result.append(word.upper())
return result
def clean(self, com):
"""Return a version of user's command that cleaned from punctuations, symbols, etc.
Args:
com (str): User's command.
Returns:
str: Cleaned version of user's command.
"""
doc = self.nlp(com)
for token in doc:
if token.pos_ in ["PUNCT", "SYM"]:
com = com.replace(token.tag_, '')
return com
def append_word_from_el_mappers(self, el_mapper_lists, word, result):
"""Append the corresponding value of given word from a element mapper lists to the result.
Args:
array ((list) of (list) of (str)s): List of list of strings.
str: Word.
str: Result.
Returns:
bool: True if the word exists in the mapper lists otherwise False
"""
for el_mapper_list in el_mapper_lists:
if word.upper() in el_mapper_list:
result.append(el_mapper_list[word.upper()].lower().strip())
return True
return False
def invert_fact_and_filter(self, invert, subject, user_id, is_public):
"""Append the corresponding value of given word from a element mapper lists to the result.
Args:
bool: Are we inverting?
str: Subject.
int: User's ID in DB.
bool: Is that a public fact?
Returns:
Fact: Result after the DB filter.
"""
subject_ref = None
if invert:
subject_ref = Fact.clause
else:
subject_ref = Fact.subject
return self.db_session.query(Fact).filter(
subject_ref == subject,
Fact.user_id == user_id,
Fact.is_public == is_public
).order_by(Fact.counter.desc()).first()