-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_webcam_person_detector.py
172 lines (115 loc) · 5.19 KB
/
run_webcam_person_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -*- coding: utf-8 -*-
# %%
import os.path as osp
import time
import cv2
import numpy as np
from PIL import Image
from absl import app, flags, logging # argparse 대용인가?; (ref) https://github.com/abseil/abseil-py
from absl.flags import FLAGS
import tensorflow as tf
from tensorflow.python.saved_model import tag_constants
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
import core.utils as utils
from core.yolov4 import filter_boxes
#%% argparse
flags.DEFINE_string('framework', 'tflite', 'TF lite' )
flags.DEFINE_string('weights', './checkpoints/yolov4-tiny-416.tflite', 'path to weights file')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_boolean('tiny', True, 'yolo-tiny moodel')
flags.DEFINE_string('model', 'yolov4', 'yolov3 or yolov4')
flags.DEFINE_string('output', 'result.png', 'path to output image')
flags.DEFINE_float('iou', 0.45, 'iou threshold')
flags.DEFINE_float('score', 0.45, 'score threshold')
flags.DEFINE_boolean('dis_cv2_window', False, 'disable cv2 window during the process') # this is good for the .ipynb
# ================================================================= #
# 1. Set device #
# ================================================================= #
# %% 01. 프로세스 장비 설정
physical_devices = tf.config.list_physical_devices('GPU') # GPU 장치 목록 출력;
# (ref) https://stackoverflow.com/questions/58956619/tensorflow-2-0-list-physical-devices-doesnt-detect-my-gpu
if physical_devices:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
else:
print("No GPU")
# ================================================================= #
# Functions #
# ================================================================= #
#%%
def model_inference(image_input, interpreter, input_details, output_details ):
interpreter.set_tensor(input_details[0]['index'], image_input)
interpreter.invoke()
pred = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
boxes, pred_conf = filter_boxes(pred[0], pred[1], score_threshold=0.25, input_shape=tf.constant([FLAGS.size, FLAGS.size]))
return boxes, pred_conf
def main(_argv):
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
input_size = FLAGS.size
""" init. Webcam object
"""
vid = cv2.VideoCapture(0) # (ref) https://076923.github.io/posts/Python-opencv-2/
vid.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
vid.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
""" Setup model
"""
interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
""" Video frame input
"""
frame_id = 0
while True:
return_value, frame = vid.read()
if return_value:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
# cv2.imshow("VideoFrame_original", frame)
else:
raise ValueError("No image! Try with another video format")
frame_size = frame.shape[:2]
image_data = cv2.resize(frame, (input_size, input_size))
image_data = image_data / 255.
image_data = image_data[np.newaxis, ...].astype(np.float32)
prev_time = time.time()
""" Inference
"""
boxes, pred_conf = model_inference(image_data, interpreter, input_details, output_details)
""" Post Processing
"""
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=FLAGS.iou,
score_threshold=FLAGS.score
)
pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
image = utils.draw_bbox(frame, pred_bbox)
curr_time = time.time()
exec_time = curr_time - prev_time
result = np.asarray(image)
info = "time: %.2f ms" %(1000*exec_time)
# print(info)
result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if not FLAGS.dis_cv2_window:
cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
cv2.imshow("result", result)
if cv2.waitKey(1) & 0xFF == ord('q'): break
vid.release()
cv2.destroyAllWindows()
# ================================================================= #
# Main #
# ================================================================= #
# %%
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass