-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_symnet.py
executable file
·161 lines (96 loc) · 4.77 KB
/
test_symnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from utils.base_solver import BaseSolver
import os, logging, importlib, re, copy, random, tqdm, argparse
import os.path as osp
import cPickle as pickle
from pprint import pprint
from datetime import datetime
import numpy as np
from collections import defaultdict
import tensorflow as tf
import tensorflow.contrib.slim as slim
import torch
from utils import config as cfg
from utils import dataset, utils
from utils.evaluator import CZSL_Evaluator
from run_symnet import make_parser
def main():
logger = logging.getLogger('MAIN')
parser = make_parser()
args = parser.parse_args()
utils.display_args(args, logger)
logger.info("Loading dataset")
test_dataloader = dataset.get_dataloader(args.data, 'test',
batchsize=args.test_bz, obj_pred=args.obj_pred)
logger.info("Loading network and solver")
network = importlib.import_module('network.'+args.network)
net = network.Network(test_dataloader, args)
with utils.create_session() as sess:
sw = SolverWrapper(net, test_dataloader, args)
sw.trainval_model(sess, args.epoch)
################################################################################
class SolverWrapper(BaseSolver):
def __init__(self, network, test_dataloader, args):
logger = self.logger("init")
self.network = network
self.test_dataloader = test_dataloader
self.weight_dir = osp.join(cfg.WEIGHT_ROOT_DIR, args.name)
self.args = args
self.trained_weight = os.path.join(cfg.WEIGHT_ROOT_DIR, args.name, "snapshot_epoch_%d.ckpt"%args.epoch)
self.logger("init").info("pretrained model <= "+self.trained_weight)
def construct_graph(self, sess):
logger = self.logger('construct_graph')
with sess.graph.as_default():
if cfg.RANDOM_SEED is not None:
tf.set_random_seed(cfg.RANDOM_SEED)
loss_op, score_op, train_summary_op = self.network.build_network()
global_step = tf.Variable(self.args.epoch, trainable=False)
return score_op, train_summary_op
def trainval_model(self, sess, max_epoch):
logger = self.logger('train_model')
logger.info('Begin training')
score_op, train_summary_op = self.construct_graph(sess)
#for x in tf.global_variables():
# print(x.name)
self.initialize(sess)
sess.graph.finalize()
evaluator = CZSL_Evaluator(self.test_dataloader.dataset, self.network)
############################## test czsl ################################
accuracies_pair = defaultdict(list)
accuracies_attr = defaultdict(list)
accuracies_obj = defaultdict(list)
for image_ind, batch in tqdm.tqdm(enumerate(self.test_dataloader), total=len(self.test_dataloader), postfix='test'):
predictions = self.network.test_step(sess, batch, score_op) # ordereddict of [score_pair, score_a, score_o]
attr_truth, obj_truth = batch[1], batch[2]
attr_truth, obj_truth = torch.from_numpy(attr_truth), torch.from_numpy(obj_truth)
match_stats = []
for key in score_op.keys():
p_pair, p_a, p_o = predictions[key]
pair_results = evaluator.score_model(p_pair, obj_truth)
match_stats = evaluator.evaluate_predictions(pair_results, attr_truth, obj_truth)
accuracies_pair[key].append(match_stats) # 0/1 sequence of t/f
a_match, o_match = evaluator.evaluate_only_attr_obj(p_a, attr_truth, p_o, obj_truth)
accuracies_attr[key].append(a_match)
accuracies_obj[key].append(o_match)
for name in accuracies_pair.keys():
accuracies = accuracies_pair[name]
accuracies = zip(*accuracies)
accuracies = map(torch.mean, map(torch.cat, accuracies))
attr_acc, obj_acc, closed_1_acc, closed_2_acc, closed_3_acc, _, objoracle_acc = map(lambda x:x.item(), accuracies)
real_attr_acc = torch.mean(torch.cat(accuracies_attr[name])).item()
real_obj_acc = torch.mean(torch.cat(accuracies_obj[name])).item()
report_dict = {
'real_attr_acc':real_attr_acc,
'real_obj_acc': real_obj_acc,
'top1_acc': closed_1_acc,
'top2_acc': closed_2_acc,
'top3_acc': closed_3_acc,
'name': self.args.name,
'epoch': self.args.epoch,
}
print(name + ": " + utils.formated_czsl_result(report_dict))
logger.info('Finished.')
if __name__=="__main__":
main()