-
Notifications
You must be signed in to change notification settings - Fork 6
/
RRAM_OFF.m
302 lines (297 loc) · 19.2 KB
/
RRAM_OFF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
function out = model
import com.comsol.model.*
import com.comsol.model.util.*
model = ModelUtil.create('Model');
model.modelPath('C:\RRAM_model');
%assign parameters
model.param.set('r_f', '3[nm]', 'filament radius');
model.param.set('h_g', '2[nm]', 'gap height');
model.param.set('r_d', '10[nm]', 'device radius');
model.param.set('h_di', '5[nm]', 'height of the dielectric');
model.param.set('h_te', '30[nm]', 'top-electrode height');
model.param.set('h_be', '65[nm]', 'bottom-electrode height');
model.param.set('h_Hf', '10[nm]', 'height Hf');
model.param.set('r_SiO2', '0.5[um]', 'SiO2 radius');
model.param.set('h_SiO2', '0.3[um]', 'SiO2 height');
model.param.set('R_L', '3.1[kohm]', 'Load Resistance');
model.param.set('V_amp', '-1.75[V]', 'voltage amplitude');
model.param.set('t_rise', '20e-6[s]', 'pulse rise time');
model.param.set('k_eff','10','ratio of energy relaxation time balastic/diffusive');
model.param.set('alpha_gap', '0.07');
model.param.set('alpha_fil', '-0.05');
model.param.set('R', '1e6');
model.param.set('atomic_vibration', '1e-13');
model.param.set('L_const', '2.44e-8[W/(S*K^2)]');
%assign material parameters for TiN/electrode
model.param.set('TC_TiN', '11.9[W/(K*m)]', 'Thermal Conductivity TiN');
model.param.set('EC_TiN', '1e6[S/m]', 'Electrical Conductivity TiN');
model.param.set('SHC_TiN', '545.33[J/(kg*K)]', 'Specific Heat Capacity TiN');
model.param.set('Per_TiN', '-1e6', 'Relative Permittivity TiN');
model.param.set('Den_TiN', '5.22e3[kg/m^3]', 'Density TiN');
%assign material parameters for HfO2-x/filament
model.param.set('TC_HfO2x', '0.65[W/(K*m)]', 'Thermal Conductivity HfO2-x');
model.param.set('EC_HfO2x', '5e3[S/m]', 'Electrical Conductivity HfO2-x');
model.param.set('SHC_HfO2x', '140[J/(kg*K)]', 'Specific Heat Capacity HfO2-x');
model.param.set('Per_HfO2x', '-1e6', 'Relative Permittivity HfO2-x');
model.param.set('Den_HfO2x', '12e3[kg/m^3]', 'Density HfO2-x');
%assign material parameter for HfO2/Dielectric
model.param.set('TC_HfO2', '0.5[W/(K*m)]', 'Thermal Conductivity HfO2');
model.param.set('EC_HfO2', '10[S/m]', 'Electrical Conductivity HfO2');
model.param.set('SHC_HfO2', '120[J/(kg*K)]', 'Specific Heat Capacity HfO2');
model.param.set('Per_HfO2', '25', 'Relative Permittivity HfO2');
model.param.set('Den_HfO2', '10e3[kg/m^3]', 'Density HfO2');
%assign material parameter for HfO2/gap
model.param.set('EC_gap', '3e3[S/m]', 'Electrical Conductivity coefficient gap');
%assign material parameter for Hf/metal cap
model.param.set('TC_Hf', '23[W/(K*m)]', 'Thermal Conductivity Hf');
model.param.set('EC_Hf', '5e6[S/m]', 'Electrical Conductivity Hf');
model.param.set('SHC_Hf', '144[J/(kg*K)]', 'Specific Heat Capacity Hf');
model.param.set('Per_Hf', '-1e6', 'Relative Permittivity Hf');
model.param.set('Den_Hf', '13.31e3[kg/m^3]', 'Density Hf');
%assign material parameter of SiO2
model.param.set('TC_SiO2', '1.38[W/(K*m)]', 'Thermal Conductivity SiO2');
model.param.set('EC_SiO2', '1e-10[S/m]', 'Electrical Conductivity SiO2');
model.param.set('SHC_SiO2', '703[J/(kg*K)]', 'Specific Heat Capacity SiO2');
model.param.set('Per_SiO2', '3.9', 'Relative Permittivity SiO2');
model.param.set('Den_SiO2', '2203[kg/m^3]', 'Density SiO2');
%creates component - local feature
model.component.create('mod1', false);
%use linear extrapolation to use temp dependent TiN electrical resistivity from experiemental data
model.component('mod1').func.create('int1', 'Interpolation');
model.component('mod1').func('int1').label('TiN resistivity');
model.component('mod1').func('int1').set('table', {'300' '98.74'; '342' '100.85'; '472' '105.76'; '572' '110.73'; '673' '114.95'});
model.component('mod1').func('int1').set('extrap', 'linear');
%use linear extrapolation to use temp dependent Hf electrical resistivity from experiemental data
model.component('mod1').func.create('int2', 'Interpolation');
model.component('mod1').func('int2').label('Hf');
model.component('mod1').func('int2').set('table', {'293' '33.08'; ...
'300' '34.03'; ...
'350' '40.97'; ...
'400' '48.11'; ...
'450' '55.47'; ...
'500' '63.18'; ...
'550' '70.99'; ...
'600' '78.67'; ...
'650' '86.19'; ...
'700' '93.53'; ...
'750' '100.6'; ...
'800' '107.3'; ...
'850' '113.4'; ...
'900' '119.0'; ...
'950' '124'; ...
'1000' '128.9'; ...
'1100' '138.0'; ...
'1200' '146.4'; ...
'1300' '153.6'; ...
'1400' '159.3'; ...
'1500' '163.5'});
model.component('mod1').func('int2').set('extrap', 'linear');
%creates 2D axisymmetry dimension workspace
model.component('mod1').geom.create('geom1', 2);
model.component('mod1').geom('geom1').axisymmetric(true);
%creates top SiO2
model.component('mod1').geom('geom1').create('r1', 'Rectangle');
model.component('mod1').geom('geom1').feature('r1').label('SiO2 superstrate ');
model.component('mod1').geom('geom1').feature('r1').set('pos', {'0' 'h_SiO2 + h_be + h_di + h_Hf +h_te'});
model.component('mod1').geom('geom1').feature('r1').set('size', {'r_SiO2' 'h_SiO2'});
%creates top electrode
model.component('mod1').geom('geom1').create('r2', 'Rectangle');
model.component('mod1').geom('geom1').feature('r2').label('TE');
model.component('mod1').geom('geom1').feature('r2').set('pos', {'0' 'h_SiO2 + h_be + h_di + h_Hf'});
model.component('mod1').geom('geom1').feature('r2').set('size', {'r_d' 'h_te'});
%creates Hf-cap
model.component('mod1').geom('geom1').create('r3', 'Rectangle');
model.component('mod1').geom('geom1').feature('r3').label('Hf cap');
model.component('mod1').geom('geom1').feature('r3').set('pos', {'0' 'h_SiO2 + h_be + h_di'});
model.component('mod1').geom('geom1').feature('r3').set('size', {'r_d' 'h_Hf'});
%creates filament rectangle
model.component('mod1').geom('geom1').create('r4', 'Rectangle');
model.component('mod1').geom('geom1').feature('r4').label('filament');
model.component('mod1').geom('geom1').feature('r4').set('pos', {'0' 'h_SiO2 + h_be+ h_g'});
model.component('mod1').geom('geom1').feature('r4').set('size', {'r_f' 'h_di-h_g'});
%creates dielectric layer
model.component('mod1').geom('geom1').create('r5', 'Rectangle');
model.component('mod1').geom('geom1').feature('r5').label('Dielectric');
model.component('mod1').geom('geom1').feature('r5').set('pos', {'0' 'h_be + h_SiO2'});
model.component('mod1').geom('geom1').feature('r5').set('size', {'r_d' 'h_di'});
%creates bottom electrode
model.component('mod1').geom('geom1').create('r6', 'Rectangle');
model.component('mod1').geom('geom1').feature('r6').label('BE');
model.component('mod1').geom('geom1').feature('r6').set('pos', {'0' 'h_SiO2'});
model.component('mod1').geom('geom1').feature('r6').set('size', {'r_d' 'h_be'});
%creates SiO2 base
model.component('mod1').geom('geom1').create('r7', 'Rectangle');
model.component('mod1').geom('geom1').feature('r7').label('SiO2 substate');
model.component('mod1').geom('geom1').feature('r7').set('pos', [0 0]);
model.component('mod1').geom('geom1').feature('r7').set('size', {'r_SiO2' 'h_SiO2'});
%creates SiO2 enclosure
model.component('mod1').geom('geom1').create('r8', 'Rectangle');
model.component('mod1').geom('geom1').feature('r8').label('SiO2 enclouser');
model.component('mod1').geom('geom1').feature('r8').set('pos', {'r_d' 'h_SiO2'});
model.component('mod1').geom('geom1').feature('r8').set('size', {'r_SiO2-r_d' 'h_be+h_di+h_Hf+h_te'});
%creates gap
model.component('mod1').geom('geom1').create('r9', 'Rectangle');
model.component('mod1').geom('geom1').feature('r9').label('gap');
model.component('mod1').geom('geom1').feature('r9').set('pos', {'0' 'h_SiO2 + h_be'});
model.component('mod1').geom('geom1').feature('r9').set('size', {'r_f' 'h_g'});
%run the geomerty
model.component('mod1').geom('geom1').run;
model.component('mod1').geom('geom1').run('fin');
%define temp and voltage dependendence of filament conductance
model.component('mod1').variable.create('var1');
model.component('mod1').variable('var1').label('filament sigma');
model.component('mod1').variable('var1').set('sigma_fil','exp(-alpha_fil*log(abs(V_amp)/(1[V]*R*atomic_vibration)))*exp(sqrt(abs(V/(8.617e-5[V/K]*T))))');
%model.component('mod1').variable('var1').set('sigma_fil', 'A*exp(sqrt(abs(V/(8.617e-5[V/K]*T))))');
%model.component('mod1').variable('var1').set('sigma_fil', 'exp(-d_E_fil/(8.617e-5[1/K]*T)+sqrt(abs(V/(8.617e-5[V/K]*T))))');
model.component('mod1').variable('var1').selection.geom('geom1', 2);
model.component('mod1').variable('var1').selection.set(4);
%define temp and voltage dependendence of gap conductance
model.component('mod1').variable.create('var2');
model.component('mod1').variable('var2').label('gap sigma');
model.component('mod1').variable('var2').set('sigma_gap','exp(-alpha_gap*log(abs(V_amp)/(1[V]*R*atomic_vibration)))*exp(sqrt(abs(V/(8.617e-5[V/K]*T))))');
%model.component('mod1').variable('var2').set('sigma_gap', 'B*exp(sqrt(abs(V/(8.617e-5[V/K]*(T)))))');
model.component('mod1').variable('var2').selection.geom('geom1', 2);
model.component('mod1').variable('var2').selection.set(3);
%creates material TiN with the assigned material parameter up above
model.component('mod1').material.create('mat1');
model.component('mod1').material('mat1').label('TiN');
model.component('mod1').material('mat1').propertyGroup('def').set('electricconductivity', '1/(1e-8[ohm*m]*int1(T/1[K]))');
model.component('mod1').material('mat1').propertyGroup('def').set('heatcapacity', 'SHC_TiN');
model.component('mod1').material('mat1').propertyGroup('def').set('relpermittivity','Per_TiN');
model.component('mod1').material('mat1').propertyGroup('def').set('density', 'Den_TiN');
model.component('mod1').material('mat1').propertyGroup('def').set('thermalconductivity', '1/(1e-8[ohm*m]*int1(T/1[K]))*T*L_const');
%creates material HfO2 with the assigned material parameter up above
model.component('mod1').material.create('mat2');
model.component('mod1').material('mat2').label('HfO2');
model.component('mod1').material('mat2').propertyGroup('def').set('electricconductivity','EC_HfO2');
model.component('mod1').material('mat2').propertyGroup('def').set('heatcapacity', 'SHC_HfO2');
model.component('mod1').material('mat2').propertyGroup('def').set('relpermittivity', 'Per_HfO2');
model.component('mod1').material('mat2').propertyGroup('def').set('density', 'Den_HfO2');
model.component('mod1').material('mat2').propertyGroup('def').set('thermalconductivity', 'TC_HfO2');
%creates material HfO2-x with the assigned material parameter up above
model.component('mod1').material.create('mat3');
model.component('mod1').material('mat3').label('HfO2-x');
model.component('mod1').material('mat3').propertyGroup('def').set('electricconductivity', 'EC_HfO2x*sigma_fil');
model.component('mod1').material('mat3').propertyGroup('def').set('heatcapacity', 'SHC_HfO2x');
model.component('mod1').material('mat3').propertyGroup('def').set('relpermittivity', 'Per_HfO2x');
model.component('mod1').material('mat3').propertyGroup('def').set('density', 'Den_HfO2x');
model.component('mod1').material('mat3').propertyGroup('def').set('thermalconductivity', 'EC_HfO2x*sigma_fil*L_const*T');
%creates material SiO2 with the assigned material parameter up above
model.component('mod1').material.create('mat4');
model.component('mod1').material('mat4').label('SiO2');
model.component('mod1').material('mat4').propertyGroup('def').set('electricconductivity', 'EC_SiO2');
model.component('mod1').material('mat4').propertyGroup('def').set('heatcapacity', 'SHC_SiO2');
model.component('mod1').material('mat4').propertyGroup('def').set('relpermittivity', 'Per_SiO2');
model.component('mod1').material('mat4').propertyGroup('def').set('density', 'Den_SiO2');
model.component('mod1').material('mat4').propertyGroup('def').set('thermalconductivity', 'TC_SiO2');
%creates material Hf with the assigned material parameter up above
model.component('mod1').material.create('mat5');
model.component('mod1').material('mat5').label('Hf');
model.component('mod1').material('mat5').propertyGroup('def').set('electricconductivity', '1/(1e-8[ohm*m]*int2(T/1[K]))');
model.component('mod1').material('mat5').propertyGroup('def').set('heatcapacity', 'SHC_Hf');
model.component('mod1').material('mat5').propertyGroup('def').set('relpermittivity', 'Per_Hf');
model.component('mod1').material('mat5').propertyGroup('def').set('density', 'Den_Hf');
model.component('mod1').material('mat5').propertyGroup('def').set('thermalconductivity', '1/(1e-8[ohm*m]*int2(T/1[K]))*T*L_const');
%for the electric conductivity
model.component('mod1').material.create('mat6');
model.component('mod1').material('mat6').label('gap');
model.component('mod1').material('mat6').propertyGroup('def').set('electricconductivity', 'EC_gap*sigma_gap');
model.component('mod1').material('mat6').propertyGroup('def').set('heatcapacity', 'SHC_HfO2');
model.component('mod1').material('mat6').propertyGroup('def').set('relpermittivity', 'Per_HfO2');
model.component('mod1').material('mat6').propertyGroup('def').set('density', 'Den_HfO2');
model.component('mod1').material('mat6').propertyGroup('def').set('thermalconductivity', 'k_eff*EC_gap*sigma_gap*L_const*T');
%tells COMSOL which domain corresponds to what material
model.component('mod1').material('mat1').selection.set([2 6]);
model.component('mod1').material('mat2').selection.set([8]);
model.component('mod1').material('mat3').selection.set([4]);
model.component('mod1').material('mat4').selection.set([1 7 9]);
model.component('mod1').material('mat5').selection.set([5]);
model.component('mod1').material('mat6').selection.set([3]);
%tells COMOSL to use Electric Current module
model.component('mod1').physics.create('ec', 'ConductiveMedia', 'geom1');
model.component('mod1').physics('ec').create('gnd1', 'Ground', 1);
model.component('mod1').physics('ec').feature('gnd1').selection.set([4]);
model.component('mod1').physics('ec').create('term1', 'Terminal', 1);
model.component('mod1').physics('ec').feature('term1').selection.set([14]);
model.component('mod1').physics('ec').feature('term1').set('TerminalType', 'Circuit');
%tells COMSOL to use heat transfer module
model.component('mod1').physics.create('ht', 'HeatTransfer', 'geom1');
model.component('mod1').physics('ht').prop('AmbientSettings').set('T_amb', '298.15[K]');
model.component('mod1').physics('ht').feature('init1').set('Tinit_src', 'root.mod1.ht.T_amb');
model.component('mod1').physics('ht').create('temp1', 'TemperatureBoundary', 1);
model.component('mod1').physics('ht').feature('temp1').set('T0_src', 'root.mod1.ht.T_amb');
model.component('mod1').physics('ht').feature('temp1').selection.set([2 15]);
%heat can escape in radiative process
model.component('mod1').physics('ht').create('ds1', 'DiffuseSurface', 1);
model.component('mod1').physics('ht').feature('ds1').set('Tamb_src', 'root.mod1.ht.T_amb');
model.component('mod1').physics('ht').feature('ds1').selection.set([1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]);
model.component('mod1').physics('ht').feature('ds1').set('epsilon_rad', 0.9);
model.component('mod1').physics('ht').feature('ds1').set('epsilon_rad_mat', 'userdef');
%tells COMSOL to use electrical circuit module
model.component('mod1').physics.create('cir', 'Circuit', 'geom1');
%set ramping voltage pulse as voltage source
model.component('mod1').physics('cir').create('V1', 'VoltageSource', -1);
model.component('mod1').physics('cir').feature('V1').set('Connections', [1; 0]);
model.component('mod1').physics('cir').feature('V1').set('sourceType', 'PulseSource');
model.component('mod1').physics('cir').feature('V1').set('value', 'V_amp');
model.component('mod1').physics('cir').feature('V1').set('td', 't_rise/2');
model.component('mod1').physics('cir').feature('V1').set('tr', 't_rise');
model.component('mod1').physics('cir').feature('V1').set('tf', 't_rise');
model.component('mod1').physics('cir').feature('V1').set('pw', 't_rise');
model.component('mod1').physics('cir').feature('V1').set('Tper', '4*t_rise');
%connect load resistor in series
model.component('mod1').physics('cir').create('R1', 'Resistor', -1);
model.component('mod1').physics('cir').feature('R1').set('R', 'R_L');
model.component('mod1').physics('cir').feature('R1').set('Connections', [1; 2]);
%connect the circuit with device on terminal defined above
model.component('mod1').physics('cir').create('IvsU1', 'ModelDeviceIV', -1);
model.component('mod1').physics('cir').feature('IvsU1').set('Connections', [2; 0]);
model.component('mod1').physics('cir').feature('IvsU1').set('V_src', 'root.mod1.ec.V0_1');
%couples electric current model and heat transfer module
model.component('mod1').multiphysics.create('tc1', 'TemperatureCoupling', -1);
model.component('mod1').multiphysics.create('emh1', 'ElectromagneticHeating', -1);
%creates mesh
model.component('mod1').mesh.create('mesh1');
model.component('mod1').mesh('mesh1').feature('size').set('hauto', 1);
%fine mesh for SiO2
model.component('mod1').mesh('mesh1').create('ftri1', 'FreeTri');
model.component('mod1').mesh('mesh1').feature('ftri1').label('SiO2');
model.component('mod1').mesh('mesh1').feature('ftri1').selection.geom('geom1', 2);
model.component('mod1').mesh('mesh1').feature('ftri1').selection.set([1 7 9]);
model.component('mod1').mesh('mesh1').feature('ftri1').create('size1', 'Size');
model.component('mod1').mesh('mesh1').feature('ftri1').feature('size1').set('hauto', 4);
%extra fine mesh for electrodes+Hf-cap
model.component('mod1').mesh('mesh1').create('ftri2', 'FreeTri');
model.component('mod1').mesh('mesh1').feature('ftri2').label('electrode');
model.component('mod1').mesh('mesh1').feature('ftri2').selection.geom('geom1', 2);
model.component('mod1').mesh('mesh1').feature('ftri2').selection.set([2 5 6]);
model.component('mod1').mesh('mesh1').feature('ftri2').create('size1', 'Size');
model.component('mod1').mesh('mesh1').feature('ftri2').feature('size1').set('hauto', 2);
%custom mesh for insulator layer
model.component('mod1').mesh('mesh1').create('ftri3', 'FreeTri');
model.component('mod1').mesh('mesh1').feature('ftri3').label('insulator');
model.component('mod1').mesh('mesh1').feature('ftri3').selection.geom('geom1', 2);
model.component('mod1').mesh('mesh1').feature('ftri3').selection.set([8]);
model.component('mod1').mesh('mesh1').feature('ftri3').create('size1', 'Size');
model.component('mod1').mesh('mesh1').feature('ftri3').feature('size1').set('hauto', 1);
model.component('mod1').mesh('mesh1').feature('ftri3').feature('size1').set('custom', 'on');
model.component('mod1').mesh('mesh1').feature('ftri3').feature('size1').set('hmax', '1e-9');
model.component('mod1').mesh('mesh1').feature('ftri3').feature('size1').set('hmaxactive', true);
%custom mesh for gap
model.component('mod1').mesh('mesh1').create('ftri4', 'FreeTri');
model.component('mod1').mesh('mesh1').feature('ftri4').label('gap and filament');
model.component('mod1').mesh('mesh1').feature('ftri4').selection.geom('geom1', 2);
model.component('mod1').mesh('mesh1').feature('ftri4').selection.set([3 4]);
model.component('mod1').mesh('mesh1').feature('ftri4').create('size1', 'Size');
model.component('mod1').mesh('mesh1').feature('ftri4').feature('size1').set('hauto', 1);
model.component('mod1').mesh('mesh1').feature('ftri4').feature('size1').set('custom', 'on');
model.component('mod1').mesh('mesh1').feature('ftri4').feature('size1').set('hmax', '0.5e-9');
model.component('mod1').mesh('mesh1').feature('ftri4').feature('size1').set('hmaxactive', true);
model.component('mod1').mesh('mesh1').run;
%creates a time-dependent transient solver and solves the above problem
model.study.create('std1');
model.study('std1').create('time', 'Transient');
model.study('std1').feature('time').set('tunit', 's');
model.study('std1').feature('time').set('tlist', 'range(0,t_rise/30, 3/2*t_rise)');
model.study('std1').run;
out = model;