-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
342 lines (303 loc) · 19.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import os
import sys
import time
import copy
import argparse
import numpy as np
import random
import pickle
import logging
import shutil
import torch
import torch.nn as nn
from torchvision.utils import save_image, make_grid
import warnings
warnings.filterwarnings("ignore")
from utils.misc import get_loops, get_dataset, get_network, get_eval_pool, get_daparam, get_time, TensorDataset, mkdir, inf_train_gen
from utils.ops import evaluate_synset, match_loss, epoch
from utils.augmentation import DiffAugment, ParamDiffAug
from rdp_accountant import compute_sigma, compute_epsilon
from opacus.utils.uniform_sampler import UniformWithReplacementSampler
from opacus.privacy_engine import PrivacyEngine
def parse_arguments():
parser = argparse.ArgumentParser(description='Parameter Processing')
## general experiment config
parser.add_argument('--exp_name', '-name', type=str, default='default', help='set up path for storing the results')
parser.add_argument('--dataset', type=str, default='MNIST', help='dataset')
parser.add_argument('--data_root', type=str, default='data', help='path for the data')
parser.add_argument('--random_seed', '-s', type=int, default=1000, help='random seed')
parser.add_argument('--only_eval', action='store_true', help='If only perform evaluation')
parser.add_argument('--load_checkpoint', action='store_true', help='If continue training from checkpoints')
## hyperparameters for dataset distillation
parser.add_argument('--method', type=str, default='DC', help='DC/DSA')
parser.add_argument('--model', type=str, default='ConvNet', help='model') # Note that BN is not compatible with DP
parser.add_argument('--spc', type=int, default=1, help='sample(s) per class')
parser.add_argument('--eval_mode', type=str, default='M', help='eval_mode') # S: the same to training model, M: multi architectures, W: net width, D: net depth, A: activation function, P: pooling layer, N: normalization layer,
parser.add_argument('--num_exp', type=int, default=1, help='the number of experiments')
parser.add_argument('--num_eval', type=int, default=3, help='the number of evaluating randomly initialized models')
parser.add_argument('--epoch_eval_train', type=int, default=300, help='epochs to train a model with synthetic data')
parser.add_argument('--iteration', type=int, default=1000, help='training iterations')
parser.add_argument('--batch_loop', type=int, default=10, help='batch loops (updating synthetic data)')
parser.add_argument('--outer_loop', type=int, default=-1, help='outer loops (updating synthetic data)')
parser.add_argument('--inner_loop', type=int, default=-1, help='inner loops (updating network on synthetic data)')
parser.add_argument('--lr_img', type=float, default=0.1, help='learning rate for updating synthetic data')
parser.add_argument('--lr_net', type=float, default=0.01, help='learning rate for updating network parameters')
parser.add_argument('--batch_real', type=int, default=256, help='batch size for real data')
parser.add_argument('--batch_train', type=int, default=256, help='batch size for training networks')
parser.add_argument('--dsa_strategy', type=str, default='None', help='differentiable Siamese augmentation strategy')
parser.add_argument('--dis_metric', type=str, default='gm', help='distance metric')
## parameter specific for DP
parser.add_argument('--enable_privacy', default=False, action='store_true', help='Enable private data generation')
parser.add_argument('--target_epsilon', type=float, default=10, help='Epsilon DP parameter')
parser.add_argument('--target_delta', type=float, default=1e-5, help='Delta DP parameter')
parser.add_argument('--max_norm', type=float, default=0.1, help='The coefficient to clip the gradients')
parser.add_argument('--sigma', type=float, default=0, help='Gaussian noise variance multiplier (only specify it for testing)') # Will be computed automatically if not specified
args = parser.parse_args()
return args
def check_args(args):
'''
check and store the arguments as well as set up the save_dir
:param args: arguments
:return:
'''
## set up save_dir
save_dir = os.path.join(os.path.dirname(__file__), 'results', args.dataset, args.exp_name)
mkdir(save_dir)
## store the parameters
if not args.only_eval:
with open(os.path.join(save_dir, 'params.txt'), 'w') as f:
for k, v in vars(args).items():
f.writelines(k + ":" + str(v) + "\n")
print(k + ":" + str(v))
pickle.dump(vars(args), open(os.path.join(save_dir, 'params.pkl'), 'wb'), protocol=2)
## store this script
shutil.copy(os.path.realpath(__file__), save_dir)
return args, save_dir
def main():
### General config
args, save_path = check_args(parse_arguments())
data_path = os.path.join(args.data_root, args.dataset)
if args.load_checkpoint or args.only_eval:
log_file = open(os.path.join(save_path, 'log.txt'), "a")
else:
log_file = open(os.path.join(save_path, 'log.txt'), "w")
sys.stdout = log_file # save output to logfile
use_cuda = torch.cuda.is_available()
args.device = 'cuda' if use_cuda else 'cpu'
args.dsa_param = ParamDiffAug()
args.dsa = True if args.method == 'DSA' else False
outer_loop, inner_loop = get_loops(args.spc) # obtain default setting (will be overwritten if specified)
if args.outer_loop == -1:
args.outer_loop = outer_loop
if args.inner_loop == -1:
args.inner_loop = inner_loop
### Random seed
args.random_seed = random.randint(1, 10 ^ 5) if args.random_seed is None else args.random_seed
random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
np.random.seed(args.random_seed)
if use_cuda:
torch.cuda.manual_seed_all(args.random_seed)
### Eval setting
eval_it_pool = np.concatenate((np.arange(10, args.iteration + 1, 100), [args.iteration])).tolist() if args.eval_mode == 'S' else [args.iteration] # The list of iterations when we evaluate models and record results.
if args.iteration not in eval_it_pool:
eval_it_pool = np.append(eval_it_pool, args.iteration)
model_eval_pool = get_eval_pool(args.eval_mode, args.model, args.model)
### Data loader (use uniform sampler)
channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test, testloader = get_dataset(args.dataset, data_path)
sample_rate = args.batch_real / len(dst_train)
uniform_sampler = UniformWithReplacementSampler(num_samples=len(dst_train), sample_rate=sample_rate)
real_loader = torch.utils.data.DataLoader(dst_train, batch_sampler=uniform_sampler, pin_memory=True)
inf_loader = inf_train_gen(real_loader)
### Record performances of all experiments
results_dict = dict()
final_accs_dict = dict()
for key in model_eval_pool:
final_accs_dict[key] = []
results_dict[key] = []
results_dict['iter'] = np.sort(np.unique(eval_it_pool))
epsilon_it = []
data_save = []
### Compute sigma given #iterations and target privacy level
if args.enable_privacy:
k = args.iteration * args.outer_loop * args.batch_loop
epsilon = args.target_epsilon
delta = args.target_delta
if args.sigma > 0:
noise_multiplier = args.sigma
print('Debugging, use pre-defined sigma=', noise_multiplier)
else:
noise_multiplier = compute_sigma(epsilon, args.batch_real / len(dst_train), k, delta)
print(f'eps,delta = ({epsilon},{delta}) ==> Noise level sigma=', noise_multiplier)
for exp in range(args.num_exp):
print('\n================== Exp %d ==================\n ' % exp)
print('Hyper-parameters: \n', args.__dict__)
print('Evaluation model pool: ', model_eval_pool)
### Organize the real dataset
indices_class = [[] for c in range(num_classes)]
images_all = [torch.unsqueeze(dst_train[i][0], dim=0) for i in range(len(dst_train))]
labels_all = [dst_train[i][1] for i in range(len(dst_train))]
for i, lab in enumerate(labels_all):
indices_class[lab].append(i)
images_all = torch.cat(images_all, dim=0).to(args.device)
labels_all = torch.tensor(labels_all, dtype=torch.long, device=args.device)
for ch in range(channel):
print('real images channel %d, mean = %.4f, std = %.4f' % (ch, torch.mean(images_all[:, ch]), torch.std(images_all[:, ch])))
### Initialize the synthetic data from random noise/load from checkpoint
iter_start = 0
image_syn = torch.randn(size=(num_classes * args.spc, channel, im_size[0], im_size[1]), dtype=torch.float, requires_grad=True, device=args.device)
label_syn = torch.tensor([np.ones(args.spc) * i for i in range(num_classes)], dtype=torch.long, requires_grad=False, device=args.device).view(-1) # [0,0,0, 1,1,1, ..., 9,9,9]
if args.load_checkpoint or args.only_eval:
checkpoint = torch.load(os.path.join(save_path, 'checkpoint.pt'))
iter_start = checkpoint['iter'] + 1
image_syn.data = checkpoint['image_syn'].to(args.device)
label_syn.data = checkpoint['label_syn'].to(args.device)
print('iterstart: {}'.format(iter_start))
else:
print('initialize synthetic data from random noise')
### Only perform evaluation
if args.only_eval:
for model_eval in model_eval_pool:
print('-------------------------\nEvaluation\nmodel_train = %s, model_eval = %s, iteration = %d' % (args.model, model_eval, iter_start))
if args.dsa:
args.dc_aug_param = None
print('DSA augmentation strategy: \n', args.dsa_strategy)
print('DSA augmentation parameters: \n', args.dsa_param.__dict__)
else:
args.dc_aug_param = get_daparam(args.dataset, args.model, model_eval, args.spc) # This augmentation parameter set is only for DC method. It will be muted when args.dsa is True.
print('DC augmentation parameters: \n', args.dc_aug_param)
accs = []
for it_eval in range(args.num_eval):
net_eval = get_network(model_eval, channel, num_classes, im_size).to(args.device) # get a random model
image_syn_eval, label_syn_eval = copy.deepcopy(image_syn.detach()), copy.deepcopy(label_syn.detach()) # avoid any unaware modification
_, acc_train, acc_test = evaluate_synset(it_eval, net_eval, image_syn_eval, label_syn_eval, testloader, args)
accs.append(acc_test)
print('Evaluate %d random %s, mean = %.4f std = %.4f\n-------------------------' % (len(accs), model_eval, np.mean(accs), np.std(accs)))
return
### Training
print('%s training begins' % get_time())
optimizer_img = torch.optim.SGD([image_syn, ], lr=args.lr_img, momentum=0.5) # optimizer_img for synthetic data
optimizer_img.zero_grad()
criterion = nn.CrossEntropyLoss(reduction='mean').to(args.device)
for it in range(iter_start, args.iteration + 1): ## re-initialize the model for each iter
if it in eval_it_pool: ### evaluation
for model_eval in model_eval_pool:
print('-------------------------\nEvaluation\nmodel_train = %s, model_eval = %s, iteration = %d' % (args.model, model_eval, it))
if args.dsa:
args.epoch_eval_train = 1000
args.dc_aug_param = None
print('DSA augmentation strategy: \n', args.dsa_strategy)
print('DSA augmentation parameters: \n', args.dsa_param.__dict__)
else:
args.dc_aug_param = get_daparam(args.dataset, args.model, model_eval, args.spc) # This augmentation parameter set is only for DC method. It will be muted when args.dsa is True.
print('DC augmentation parameters: \n', args.dc_aug_param)
if args.dsa or args.dc_aug_param['strategy'] != 'none':
args.epoch_eval_train = 1000 # Training with data augmentation needs more epochs.
else:
args.epoch_eval_train = 300
accs = []
for it_eval in range(args.num_eval):
net_eval = get_network(model_eval, channel, num_classes, im_size).to(args.device) # get a random model
image_syn_eval, label_syn_eval = copy.deepcopy(image_syn.detach()), copy.deepcopy(label_syn.detach()) # avoid any unaware modification
_, acc_train, acc_test = evaluate_synset(it_eval, net_eval, image_syn_eval, label_syn_eval, testloader, args)
accs.append(acc_test)
print('Evaluate %d random %s, mean = %.4f std = %.4f\n-------------------------' % (len(accs), model_eval, np.mean(accs), np.std(accs)))
results_dict[model_eval].append(accs)
if it == args.iteration: # record the final results
final_accs_dict[model_eval] += accs
### Visualize and save
save_name = os.path.join(save_path, 'vis_%s_%s_%s_%dspc_exp%d_iter%d.png' % (args.method, args.dataset, args.model, args.spc, exp, it))
image_syn_vis = copy.deepcopy(image_syn.detach().cpu())
for ch in range(channel):
image_syn_vis[:, ch] = image_syn_vis[:, ch] * std[ch] + mean[ch]
image_syn_vis[image_syn_vis < 0] = 0.0
image_syn_vis[image_syn_vis > 1] = 1.0
save_image(image_syn_vis, save_name, nrow=args.spc) # Trying normalize = True/False may get better visual effects.
### Optimize synthetic data
net = get_network(args.model, channel, num_classes, im_size).to(args.device) # get a random model
net_shadow = copy.deepcopy(net) # Used for obtain DP real gradient (shadow is necessary as otherwise the hooks will cause problems)
net.train()
net_shadow.train()
criterion = criterion
net_parameters = list(net.parameters())
net_shadow_parameters = list(net_shadow.parameters())
optimizer_net_grad = torch.optim.SGD(net_shadow.parameters(), lr=args.lr_net) # optimizer for obtaining DP real gradient
optimizer_net = torch.optim.SGD(net.parameters(), lr=args.lr_net) # optimizer for update model
loss_avg = 0
args.dc_aug_param = None # Mute the DC augmentation when training synthetic data.
### Initialize for DP
if args.enable_privacy:
### Initialize privacy engine
privacy_engine = PrivacyEngine(net_shadow, sample_size=len(dst_train), batch_size=args.batch_real, alphas=[1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)), noise_multiplier=noise_multiplier, max_grad_norm=args.max_norm)
privacy_engine.attach(optimizer_net_grad)
for ol in range(args.outer_loop): # (~targeting at global trajectory matching)
### Optimize synthetic data
for _ in range(args.batch_loop): # sample multiple batches of real data and obtain gradients given the same model parameter (~target at local behavior matching)
img_real, lab_real = next(inf_loader)
img_real = img_real.to(args.device)
lab_real = lab_real.to(args.device)
img_syn = image_syn
lab_syn = label_syn
if args.dsa:
seed = int(time.time() * 1000) % 100000
img_real = DiffAugment(img_real, args.dsa_strategy, seed=seed, param=args.dsa_param)
img_syn = DiffAugment(img_syn, args.dsa_strategy, seed=seed, param=args.dsa_param)
## Compute real_gradient
if args.enable_privacy:
net_shadow.load_state_dict(net.state_dict()) # synchronize the current model parameter (net -> net_shadow)
net_shadow.zero_grad()
output_real = net_shadow(img_real)
loss_real = criterion(output_real, lab_real)
loss_real.backward()
optimizer_net_grad.step() # this step compute the DP noisy gradient on net_shadow
gw_real = list((p.grad.detach().clone() for p in net_shadow_parameters))
else:
net.zero_grad()
output_real = net(img_real)
loss_real = criterion(output_real, lab_real)
gw_real = torch.autograd.grad(loss_real, net_parameters)
gw_real = list((_.detach().clone() for _ in gw_real))
## Compute fake_gradient and matching loss
net.zero_grad()
output_syn = net(img_syn)
loss_syn = criterion(output_syn, lab_syn)
gw_syn = torch.autograd.grad(loss_syn, net_parameters, create_graph=True)
loss = match_loss(gw_syn, gw_real, args)
## Update image
optimizer_img.zero_grad()
loss.backward()
optimizer_img.step()
loss_avg += loss.item()
if ol == args.outer_loop - 1:
break
### Update network (#inner_loop epochs on the current synthetic set)
image_syn_train, label_syn_train = copy.deepcopy(image_syn.detach()), copy.deepcopy(label_syn.detach()) # avoid any unaware modification
dst_syn_train = TensorDataset(image_syn_train, label_syn_train)
trainloader = torch.utils.data.DataLoader(dst_syn_train, batch_size=args.batch_train, shuffle=True, num_workers=0)
for il in range(args.inner_loop):
epoch('train', trainloader, net, optimizer_net, criterion, args, aug=True if args.dsa else False)
if it in eval_it_pool: ## print intermediate eval results
if args.enable_privacy:
k = it * args.batch_loop * args.outer_loop
epsilon = compute_epsilon(noise_multiplier, args.batch_real / len(dst_train), k, args.target_delta)
else:
epsilon = np.inf
loss_test, acc_test = epoch('test', testloader, net, optimizer_net, criterion, args, aug=False)
epsilon_it.append(epsilon)
print('{} iter={}, loss={}, acc={}, ep={}'.format(get_time(), it, loss_avg, acc_test, epsilon))
if it == args.iteration: ## record the final results
data_save.append([copy.deepcopy(image_syn.detach().cpu()), copy.deepcopy(label_syn.detach().cpu())])
torch.save({'data': data_save, 'final_accs_dict': final_accs_dict, }, os.path.join(save_path, 'res_%s_%s_%s_%dspc.pt' % (args.method, args.dataset, args.model, args.spc)))
if it % 50 == 0: ## save checkpoints
torch.save({'image_syn': copy.deepcopy(image_syn.detach().cpu()), 'label_syn': copy.deepcopy(label_syn.detach().cpu()), 'iter': it}, os.path.join(save_path, 'checkpoint.pt'))
results_dict['epsilon_it'] = np.array(epsilon_it)
pickle.dump(results_dict, open(os.path.join(save_path, 'results.pkl'), 'wb'))
print('\n==================== Final Results ====================\n')
for key in model_eval_pool:
accs = final_accs_dict[key]
print('Run %d experiments, train on %s, evaluate %d random %s, mean = %.2f%% std = %.2f%%' % (args.num_exp, args.model, len(accs), key, np.mean(accs) * 100, np.std(accs) * 100))
results_dict['epsilon_it'] = np.array(epsilon_it)
pickle.dump(results_dict, open(os.path.join(save_path, 'results.pkl'), 'wb'))
log_file.close()
if __name__ == '__main__':
main()