-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathmisc_utility_functions.py
334 lines (306 loc) · 14.5 KB
/
misc_utility_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from logger_config import setup_logger
from embeddings_data_models import TextEmbedding
import socket
import os
import re
import json
import io
import glob
import redis
import sys
import threading
import numpy as np
import faiss
import base64
from typing import Optional
from pathlib import Path
from typing import Any
from database_functions import AsyncSessionLocal
from sqlalchemy import select
from collections import defaultdict
from PIL import Image
from decouple import config
logger = setup_logger()
USE_RAMDISK = config("USE_RAMDISK", default=False, cast=bool)
RAMDISK_PATH = config("RAMDISK_PATH", default="/mnt/ramdisk", cast=str)
BASE_DIRECTORY = os.path.dirname(os.path.abspath(__file__))
class suppress_stdout_stderr(object):
def __enter__(self):
self.outnull_file = open(os.devnull, 'w')
self.errnull_file = open(os.devnull, 'w')
self.old_stdout_fileno_undup = sys.stdout.fileno()
self.old_stderr_fileno_undup = sys.stderr.fileno()
self.old_stdout_fileno = os.dup ( sys.stdout.fileno() )
self.old_stderr_fileno = os.dup ( sys.stderr.fileno() )
self.old_stdout = sys.stdout
self.old_stderr = sys.stderr
os.dup2 ( self.outnull_file.fileno(), self.old_stdout_fileno_undup )
os.dup2 ( self.errnull_file.fileno(), self.old_stderr_fileno_undup )
sys.stdout = self.outnull_file
sys.stderr = self.errnull_file
return self
def __exit__(self, *_):
sys.stdout = self.old_stdout
sys.stderr = self.old_stderr
os.dup2 ( self.old_stdout_fileno, self.old_stdout_fileno_undup )
os.dup2 ( self.old_stderr_fileno, self.old_stderr_fileno_undup )
os.close ( self.old_stdout_fileno )
os.close ( self.old_stderr_fileno )
self.outnull_file.close()
self.errnull_file.close()
def safe_path(base_path, file_name):
abs_base_path = os.path.abspath(base_path)
abs_user_path = os.path.abspath(os.path.join(base_path, file_name))
return abs_user_path.startswith(abs_base_path), abs_user_path
def clean_filename_for_url_func(dirty_filename: str) -> str:
clean_filename = re.sub(r'[^\w\s]', '', dirty_filename) # Remove special characters and replace spaces with underscores
clean_filename = clean_filename.replace(' ', '_')
return clean_filename
def is_redis_running(host='localhost', port=6379):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
s.connect((host, port))
return True
except ConnectionRefusedError:
return False
finally:
s.close()
def start_redis_server():
try:
result = os.system("sudo service redis-server start")
if result == 0:
print("Redis server started successfully.")
else:
logger.error(f"Failed to start Redis server, return code: {result}")
raise Exception("Failed to start Redis server.")
except Exception as e:
logger.error(f"Failed to start Redis server: {e}")
raise
def restart_redis_server():
try:
result = os.system("sudo service redis-server stop")
if result != 0:
logger.warning(f"Failed to stop Redis server, it might not be running. Return code: {result}")
result = os.system("sudo service redis-server start")
if result == 0:
print("Redis server started successfully.")
else:
logger.error(f"Failed to start Redis server, return code: {result}")
raise Exception("Failed to start Redis server.")
except Exception as e:
logger.error(f"Failed to restart Redis server: {e}")
raise
def configure_redis_optimally(redis_host='localhost', redis_port=6379, maxmemory='1gb'):
configured_file = 'redis_configured.txt'
if os.path.exists(configured_file):
print("Redis has already been configured. Skipping configuration.")
return
if not is_redis_running(redis_host, redis_port):
start_redis_server()
r = redis.StrictRedis(host=redis_host, port=redis_port, decode_responses=True)
output = []
def set_config(key, value):
try:
response = r.config_set(key, value)
msg = f"Successfully set {key} to {value}" if response else f"Failed to set {key} to {value}"
output.append(msg)
print(msg)
except redis.exceptions.ConnectionError as e:
logger.error(f"Failed to set config {key}: {e}")
raise
set_config('maxmemory', maxmemory)
set_config('maxmemory-policy', 'allkeys-lru')
max_clients = min(os.cpu_count() * 1000, 50000)
set_config('maxclients', max_clients)
set_config('timeout', 300)
set_config('save', '900 1 300 10 60 10000')
set_config('appendonly', 'yes')
set_config('appendfsync', 'everysec')
set_config('stop-writes-on-bgsave-error', 'no')
output.append("Redis configuration optimized successfully.")
output.append("Restarting Redis server to apply changes...")
with open(configured_file, 'w') as f:
f.write("\n".join(output))
print("\n".join(output))
restart_redis_server()
def configure_redis_in_background():
threading.Thread(target=configure_redis_optimally).start()
async def build_faiss_indexes(force_rebuild=False):
global faiss_indexes, associated_texts_by_model_and_pooling_method
if os.environ.get("FAISS_SETUP_DONE") == "1" and not force_rebuild:
return faiss_indexes, associated_texts_by_model_and_pooling_method
faiss_indexes = {}
associated_texts_by_model_and_pooling_method = defaultdict(lambda: defaultdict(list)) # Create a nested dictionary to store associated texts by model name and pooling method
async with AsyncSessionLocal() as session:
result = await session.execute(select(TextEmbedding.llm_model_name, TextEmbedding.text, TextEmbedding.embedding_json, TextEmbedding.embedding_pooling_method))
embeddings_by_model_and_pooling = defaultdict(lambda: defaultdict(list))
for row in result.fetchall(): # Process regular embeddings
llm_model_name = row[0]
embedding_pooling_method = row[3]
associated_texts_by_model_and_pooling_method[llm_model_name][embedding_pooling_method].append(row[1]) # Store the associated text by model name and pooling method
embeddings_by_model_and_pooling[llm_model_name][embedding_pooling_method].append((row[1], json.loads(row[2])))
for llm_model_name, embeddings_by_pooling in embeddings_by_model_and_pooling.items():
for embedding_pooling_method, embeddings in embeddings_by_pooling.items():
logger.info(f"Building Faiss index over embeddings for model {llm_model_name} with pooling method {embedding_pooling_method}...")
embeddings_array = np.array([e[1] for e in embeddings]).astype('float32')
if embeddings_array.size == 0:
logger.error(f"No embeddings were loaded from the database for model {llm_model_name} with pooling method {embedding_pooling_method}, so nothing to build the Faiss index with!")
continue
faiss.normalize_L2(embeddings_array) # Normalize the vectors for cosine similarity
faiss_index = faiss.IndexFlatIP(embeddings_array.shape[1]) # Use IndexFlatIP for cosine similarity
faiss_index.add(embeddings_array)
faiss_indexes[(llm_model_name, embedding_pooling_method)] = faiss_index # Store the index by model name and pooling method
os.environ["FAISS_SETUP_DONE"] = "1"
return faiss_indexes, associated_texts_by_model_and_pooling_method
def normalize_logprobs(avg_logprob, min_logprob, max_logprob):
range_logprob = max_logprob - min_logprob
return (avg_logprob - min_logprob) / range_logprob if range_logprob != 0 else 0.5
def truncate_string(s: str, max_length: int = 100) -> str:
return s[:max_length]
def remove_pagination_breaks(text: str) -> str:
text = re.sub(r'-(\n)(?=[a-z])', '', text) # Remove hyphens at the end of lines when the word continues on the next line
text = re.sub(r'(?<=\w)(?<![.?!-]|\d)\n(?![\nA-Z])', ' ', text) # Replace line breaks that are not preceded by punctuation or list markers and not followed by an uppercase letter or another line break
return text
def sophisticated_sentence_splitter(text):
text = remove_pagination_breaks(text)
pattern = r'\.(?!\s*(com|net|org|io)\s)(?![0-9])' # Split on periods that are not followed by a space and a top-level domain or a number
pattern += r'|[.!?]\s+' # Split on whitespace that follows a period, question mark, or exclamation point
pattern += r'|\.\.\.(?=\s)' # Split on ellipses that are followed by a space
sentences = re.split(pattern, text)
refined_sentences = []
temp_sentence = ""
for sentence in sentences:
if sentence is not None:
temp_sentence += sentence
if temp_sentence.count('"') % 2 == 0: # If the number of quotes is even, then we have a complete sentence
refined_sentences.append(temp_sentence.strip())
temp_sentence = ""
if temp_sentence:
refined_sentences[-1] += temp_sentence
return [s.strip() for s in refined_sentences if s.strip()]
def merge_transcript_segments_into_combined_text(segments):
if not segments:
return "", [], []
min_logprob = min(segment['avg_logprob'] for segment in segments)
max_logprob = max(segment['avg_logprob'] for segment in segments)
combined_text = ""
sentence_buffer = ""
list_of_metadata_dicts = []
list_of_sentences = []
char_count = 0
time_start = None
time_end = None
total_logprob = 0.0
segment_count = 0
for segment in segments:
if time_start is None:
time_start = segment['start']
time_end = segment['end']
total_logprob += segment['avg_logprob']
segment_count += 1
sentence_buffer += segment['text'] + " "
sentences = sophisticated_sentence_splitter(sentence_buffer)
for sentence in sentences:
combined_text += sentence.strip() + " "
list_of_sentences.append(sentence.strip())
char_count += len(sentence.strip()) + 1 # +1 for the space
avg_logprob = total_logprob / segment_count
model_confidence_score = normalize_logprobs(avg_logprob, min_logprob, max_logprob)
metadata = {
'start_char_count': char_count - len(sentence.strip()) - 1,
'end_char_count': char_count - 2,
'time_start': time_start,
'time_end': time_end,
'model_confidence_score': model_confidence_score
}
list_of_metadata_dicts.append(metadata)
sentence_buffer = sentences[-1] if len(sentences) % 2 != 0 else ""
return combined_text, list_of_metadata_dicts, list_of_sentences
class JSONAggregator:
def __init__(self):
self.completions = []
self.aggregate_result = None
@staticmethod
def weighted_vote(values, weights):
tally = defaultdict(float)
for v, w in zip(values, weights):
tally[v] += w
return max(tally, key=tally.get)
@staticmethod
def flatten_json(json_obj, parent_key='', sep='->'):
items = {}
for k, v in json_obj.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.update(JSONAggregator.flatten_json(v, new_key, sep=sep))
else:
items[new_key] = v
return items
@staticmethod
def get_value_by_path(json_obj, path, sep='->'):
keys = path.split(sep)
item = json_obj
for k in keys:
item = item[k]
return item
@staticmethod
def set_value_by_path(json_obj, path, value, sep='->'):
keys = path.split(sep)
item = json_obj
for k in keys[:-1]:
item = item.setdefault(k, {})
item[keys[-1]] = value
def calculate_path_weights(self):
all_paths = []
for j in self.completions:
all_paths += list(self.flatten_json(j).keys())
path_weights = defaultdict(float)
for path in all_paths:
path_weights[path] += 1.0
return path_weights
def aggregate(self):
path_weights = self.calculate_path_weights()
aggregate = {}
for path, weight in path_weights.items():
values = [self.get_value_by_path(j, path) for j in self.completions if path in self.flatten_json(j)]
weights = [weight] * len(values)
aggregate_value = self.weighted_vote(values, weights)
self.set_value_by_path(aggregate, path, aggregate_value)
self.aggregate_result = aggregate
class FakeUploadFile:
def __init__(self, filename: str, content: Any, content_type: str = 'text/plain'):
self.filename = filename
self.content_type = content_type
self.file = io.BytesIO(content)
def read(self, size: int = -1) -> bytes:
return self.file.read(size)
def seek(self, offset: int, whence: int = 0) -> int:
return self.file.seek(offset, whence)
def tell(self) -> int:
return self.file.tell()
def process_image(image_path, max_dimension=1024):
original_path = Path(image_path)
processed_image_path = original_path.with_stem(original_path.stem + "_processed").with_suffix(original_path.suffix)
with Image.open(image_path) as img:
img.thumbnail((max_dimension, max_dimension), Image.LANCZOS)
img.save(processed_image_path)
return processed_image_path
def alpha_remover_func(img):
if img.mode != 'RGBA':
return img
canvas = Image.new('RGBA', img.size, (255, 255, 255, 255))
canvas.paste(img, mask=img)
return canvas.convert('RGB')
def image_to_base64_data_uri(file_path):
with open(file_path, "rb") as img_file:
base64_data = base64.b64encode(img_file.read()).decode('utf-8')
return f"data:image/png;base64,{base64_data}"
def find_clip_model_path(llm_model_name: str) -> Optional[str]:
models_dir = os.path.join(RAMDISK_PATH, 'models') if USE_RAMDISK else os.path.join(BASE_DIRECTORY, 'models')
base_name = os.path.splitext(os.path.basename(llm_model_name))[0]
mmproj_model_name = base_name.replace("-f16", "-mmproj-f16").replace("-int4", "-mmproj-f16")
mmproj_files = glob.glob(os.path.join(models_dir, f"{mmproj_model_name}.gguf"))
if not mmproj_files:
logger.error(f"No mmproj file found matching: {mmproj_model_name}")
return None
return mmproj_files[0]