-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy pathssd.py
executable file
·88 lines (70 loc) · 4.38 KB
/
ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import copy
from typing import Union, Tuple
import torch
from omegaconf import DictConfig
from torch import Tensor
from super_gradients.common.object_names import Models
from super_gradients.common.registry.registry import register_model
from super_gradients.module_interfaces import ExportableObjectDetectionModel, AbstractObjectDetectionDecodingModule
from super_gradients.training.models.arch_params_factory import get_arch_params
from super_gradients.training.models.detection_models.customizable_detector import CustomizableDetector
from super_gradients.training.utils.detection_utils import convert_cxcywh_bbox_to_xyxy
from super_gradients.training.utils.utils import HpmStruct, get_param
DEFAULT_SSD_MOBILENET_V1_ARCH_PARAMS = get_arch_params("ssd_mobilenetv1_arch_params")
DEFAULT_SSD_LITE_MOBILENET_V2_ARCH_PARAMS = get_arch_params("ssd_lite_mobilenetv2_arch_params")
@register_model(Models.SSD_MOBILENET_V1)
class SSDMobileNetV1(CustomizableDetector, ExportableObjectDetectionModel):
def __init__(self, arch_params: Union[HpmStruct, DictConfig], in_channels: int = 3):
merged_arch_params = HpmStruct(**copy.deepcopy(DEFAULT_SSD_MOBILENET_V1_ARCH_PARAMS))
merged_arch_params.override(**arch_params.to_dict())
super().__init__(
backbone=merged_arch_params.backbone,
neck=merged_arch_params.neck,
heads=merged_arch_params.heads,
num_classes=get_param(merged_arch_params, "num_classes", None),
bn_eps=get_param(merged_arch_params, "bn_eps", None),
bn_momentum=get_param(merged_arch_params, "bn_momentum", None),
inplace_act=get_param(merged_arch_params, "inplace_act", True),
in_channels=in_channels,
)
def get_decoding_module(self, num_pre_nms_predictions: int, **kwargs) -> AbstractObjectDetectionDecodingModule:
return SSDDecodingModule(num_pre_nms_predictions=num_pre_nms_predictions, **kwargs)
@register_model(Models.SSD_LITE_MOBILENET_V2)
class SSDLiteMobileNetV2(CustomizableDetector, ExportableObjectDetectionModel):
def __init__(self, arch_params: Union[HpmStruct, DictConfig], in_channels: int = 3):
merged_arch_params = HpmStruct(**copy.deepcopy(DEFAULT_SSD_LITE_MOBILENET_V2_ARCH_PARAMS))
merged_arch_params.override(**arch_params.to_dict())
super().__init__(
backbone=merged_arch_params.backbone,
neck=merged_arch_params.neck,
heads=merged_arch_params.heads,
num_classes=get_param(merged_arch_params, "num_classes", None),
bn_eps=get_param(merged_arch_params, "bn_eps", None),
bn_momentum=get_param(merged_arch_params, "bn_momentum", None),
inplace_act=get_param(merged_arch_params, "inplace_act", True),
in_channels=in_channels,
)
def get_decoding_module(self, num_pre_nms_predictions: int, **kwargs) -> AbstractObjectDetectionDecodingModule:
return SSDDecodingModule(num_pre_nms_predictions=num_pre_nms_predictions, **kwargs)
class SSDDecodingModule(AbstractObjectDetectionDecodingModule):
def __init__(self, num_pre_nms_predictions: int, with_confidence: bool = True):
super().__init__()
self.num_pre_nms_predictions = num_pre_nms_predictions
self.with_confidence = with_confidence
def forward(self, inputs) -> Tuple[Tensor, Tensor]:
predictions = inputs[0]
cxcywh = predictions[:, :, :4]
conf = predictions[:, :, 4:5]
pred_scores = predictions[:, :, 5:]
pred_bboxes = convert_cxcywh_bbox_to_xyxy(cxcywh)
if self.with_confidence:
pred_scores = pred_scores * conf
pred_cls_conf, _ = torch.max(pred_scores, dim=2)
nms_top_k = self.num_pre_nms_predictions
topk_candidates = torch.topk(pred_cls_conf, dim=1, k=nms_top_k, largest=True, sorted=True)
offsets = nms_top_k * torch.arange(pred_cls_conf.size(0), device=pred_cls_conf.device)
flat_indices = topk_candidates.indices + offsets.reshape(pred_cls_conf.size(0), 1)
flat_indices = torch.flatten(flat_indices)
output_pred_bboxes = pred_bboxes.reshape(-1, pred_bboxes.size(2))[flat_indices, :].reshape(pred_bboxes.size(0), nms_top_k, pred_bboxes.size(2))
output_pred_scores = pred_scores.reshape(-1, pred_scores.size(2))[flat_indices, :].reshape(pred_scores.size(0), nms_top_k, pred_scores.size(2))
return output_pred_bboxes, output_pred_scores