-
Notifications
You must be signed in to change notification settings - Fork 522
/
Copy pathmobilenetv2.py
executable file
·254 lines (219 loc) · 9.92 KB
/
mobilenetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
"""
This is a PyTorch implementation of MobileNetV2 architecture as described in the paper:
Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation.
https://arxiv.org/pdf/1801.04381
Code taken from https://github.com/tonylins/pytorch-mobilenet-v2
License: Apache Version 2.0, January 2004 http://www.apache.org/licenses/
Pre-trained ImageNet model: 'deci-model-repository/mobilenet_v2/ckpt_best.pth'
"""
from typing import Optional, Callable, Dict
import numpy as np
import torch
import torch.nn as nn
import math
from super_gradients.common.registry.registry import register_model
from super_gradients.common.object_names import Models
from super_gradients.training.models import BaseClassifier
from super_gradients.training.utils.utils import get_param
class MobileNetBase(BaseClassifier):
def __init__(self):
super(MobileNetBase, self).__init__()
def replace_head(self, new_num_classes=None, new_head=None):
if new_num_classes is None and new_head is None:
raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.")
if new_head is not None:
self.classifier = new_head
else:
self.classifier[-1] = nn.Linear(self.classifier[-1].in_features, new_num_classes)
def get_finetune_lr_dict(self, lr: float) -> Dict[str, float]:
return {"classifier": lr, "default": 0.0}
def conv_bn(inp, oup, stride):
return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True))
def conv_1x1_bn(inp, oup):
return nn.Sequential(nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True))
def make_divisible(x, divisible_by=8):
import numpy as np
return int(np.ceil(x * 1.0 / divisible_by) * divisible_by)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio, grouped_conv_size=1):
"""
:param inp: number of input channels
:param oup: number of output channels
:param stride: conv stride
:param expand_ratio: expansion ratio of the hidden layer after pointwise conv
:grouped_conv_size: number of channels per grouped convolution, for depth-wise-separable convolution, use grouped_conv_size=1
"""
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(inp * expand_ratio)
groups = int(hidden_dim / grouped_conv_size)
self.use_res_connect = self.stride == 1 and inp == oup
if expand_ratio == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(MobileNetBase):
def __init__(
self,
num_classes,
dropout: float,
width_mult=1.0,
structure=None,
backbone_mode: bool = False,
grouped_conv_size=1,
in_channels=3,
) -> object:
super(MobileNetV2, self).__init__()
self.in_channels = in_channels
block = InvertedResidual
last_channel = 1280
# IF STRUCTURE IS NONE - USE THE DEFAULT STRUCTURE NOTED
# t, c, n, s stage-0 is the first conv_bn layer
self.interverted_residual_setting = structure or [
[1, 16, 1, 1], # stage-1
[6, 24, 2, 2], # stage-2
[6, 32, 3, 2], # stage-3
[6, 64, 4, 2], # stage-4
[6, 96, 3, 1], # stage-5
[6, 160, 3, 2], # stage-6
[6, 320, 1, 1],
] # stage-7
# stage-8 is the last_layer
self.last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel
curr_channels = 32
self.features = [conv_bn(in_channels, curr_channels, 2)]
# building inverted residual blocks
for t, c, n, s in self.interverted_residual_setting:
output_channel = make_divisible(c * width_mult) if t > 1 else c
for i in range(n):
if i == 0:
self.features.append(block(curr_channels, output_channel, s, expand_ratio=t, grouped_conv_size=grouped_conv_size))
else:
self.features.append(block(curr_channels, output_channel, 1, expand_ratio=t, grouped_conv_size=grouped_conv_size))
curr_channels = output_channel
# building last several layers
self.features.append(conv_1x1_bn(curr_channels, self.last_channel))
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
self.backbone_mode = backbone_mode
if self.backbone_mode:
self.classifier = nn.Identity()
# TODO: remove during migration of YOLOs to the new base
self.backbone_connection_channels = self._extract_connection_layers_input_channel_size()
else:
# building classifier
self.classifier = nn.Sequential(nn.Dropout(dropout), nn.Linear(self.last_channel, num_classes))
self._initialize_weights()
def forward(self, x):
x = self.features(x)
if self.backbone_mode:
return x
else:
x = x.mean(3).mean(2)
return self.classifier(x)
def _extract_connection_layers_input_channel_size(self):
"""
Extracts the number of channels out when using mobilenetV2 as yolo backbone
"""
curr_layer_input = torch.rand(1, self.in_channels, 320, 320) # input dims are used to extract number of channels
layers_num_to_extract = [np.array(self.interverted_residual_setting)[:stage, 2].sum() for stage in [3, 5]]
connection_layers_input_channel_size = []
for layer_idx, feature in enumerate(self.features):
curr_layer_input = feature(curr_layer_input)
if layer_idx in layers_num_to_extract:
connection_layers_input_channel_size.append(curr_layer_input.shape[1])
connection_layers_input_channel_size.append(self.last_channel)
connection_layers_input_channel_size.reverse()
return connection_layers_input_channel_size
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def replace_input_channels(self, in_channels: int, compute_new_weights_fn: Optional[Callable[[nn.Module, int], nn.Module]] = None):
from super_gradients.modules.weight_replacement_utils import replace_conv2d_input_channels
self.features[0][0] = replace_conv2d_input_channels(conv=self.features[0][0], in_channels=in_channels, fn=compute_new_weights_fn)
self.in_channels = self.get_input_channels()
def get_input_channels(self) -> int:
return self.features[0][0].in_channels
@register_model(Models.MOBILENET_V2)
class MobileNetV2Base(MobileNetV2):
def __init__(self, arch_params):
"""
:param arch_params: HpmStruct
must contain: 'num_classes': int
"""
super().__init__(
num_classes=arch_params.num_classes,
width_mult=1.0,
structure=None,
dropout=get_param(arch_params, "dropout", 0.0),
in_channels=get_param(arch_params, "in_channels", 3),
)
@register_model(Models.MOBILE_NET_V2_135)
class MobileNetV2_135(MobileNetV2):
def __init__(self, arch_params):
"""
This Model achieves–≠ 75.73% on Imagenet - similar to Resnet50
:param arch_params: HpmStruct
must contain: 'num_classes': int
"""
super().__init__(
num_classes=arch_params.num_classes,
width_mult=1.35,
structure=None,
dropout=get_param(arch_params, "dropout", 0.0),
in_channels=get_param(arch_params, "in_channels", 3),
)
@register_model(Models.CUSTOM_MOBILENET_V2)
class CustomMobileNetV2(MobileNetV2):
def __init__(self, arch_params):
"""
:param arch_params:–≠ HpmStruct
must contain:
'num_classes': int
'width_mult': float
'structure' : list. specify the mobilenetv2 architecture
"""
super().__init__(
num_classes=arch_params.num_classes,
width_mult=arch_params.width_mult,
structure=arch_params.structure,
dropout=get_param(arch_params, "dropout", 0.0),
in_channels=get_param(arch_params, "in_channels", 3),
)