-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
63 lines (50 loc) · 1.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Imports:
# --------
import torch
import random
from collections import deque
import torch.nn.functional as F
# Repla Buffer:
# -------------
class ReplayBuffer():
def __init__(self, buffer_limit):
self.buffer = deque(maxlen=buffer_limit)
def put(self, transition):
self.buffer.append(transition)
def sample(self, n):
mini_batch = random.sample(self.buffer, n)
s_lst, a_lst, r_lst, s_prime_lst, done_mask_lst = [], [], [], [], []
for transition in mini_batch:
s, a, r, s_prime, done_mask = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append([r])
s_prime_lst.append(s_prime)
done_mask_lst.append([done_mask])
return torch.tensor(s_lst, dtype=torch.float), torch.tensor(a_lst), \
torch.tensor(r_lst), torch.tensor(s_prime_lst, dtype=torch.float), \
torch.tensor(done_mask_lst)
def size(self):
return len(self.buffer)
# Train function:
# ---------------
def train(q_net,
q_target,
memory,
optimizer,
batch_size,
gamma):
#! We sample from the same Replay Buffer n=10 times
for _ in range(10):
#! Monte Carlo sampling of a batch
s, a, r, s_prime, done_mask = memory.sample(batch_size)
#! Get the Q-values
q_out = q_net(s)
#! DQN update rule
q_a = q_out.gather(1, a)
max_q_prime = q_target(s_prime).max(1)[0].unsqueeze(1)
target = r + gamma * max_q_prime * done_mask
loss = F.smooth_l1_loss(q_a, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()