forked from dvlab-research/PanopticFCN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPanopticFCN-R50-cityscapes.yaml
69 lines (68 loc) · 1.69 KB
/
PanopticFCN-R50-cityscapes.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
MODEL:
META_ARCHITECTURE: "PanopticFCN"
# WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
WEIGHTS: "data/pretrained/R-50.pkl"
MASK_ON: True
PIXEL_MEAN: [123.675, 116.28, 103.53]
PIXEL_STD: [1.0, 1.0, 1.0]
RESNETS:
DEPTH: 50
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
FPN:
IN_FEATURES: ["res2", "res3", "res4", "res5"]
LOSS_WEIGHT:
SEGMENT: 4.0
POSITION_HEAD:
THING:
NUM_CLASSES: 8
THRES: 0.01
TOP_NUM: 200
STUFF:
THRES: 0.1
NUM_CLASSES: 19
WITH_THING: False # Check that this is not a problem
ALL_CLASSES: True
SEM_SEG_HEAD:
NUM_CLASSES: 19
KERNEL_HEAD:
INSTANCE_SCALES: ((1, 128), (64, 256), (128, 512), (256, 1024), (512, 2048),)
TENSOR_DIM: 150 # Adapted because max inst. per img > 100
INFERENCE:
INST_THRES: 0.5
SIMILAR_THRES: 0.97
COMBINE:
STUFF_AREA_LIMIT: 2048
DATASETS:
NAME: "Cityscapes"
TRAIN: ("cityscapes_fine_panoptic_train_separated",)
TEST: ("cityscapes_fine_panoptic_val_separated",)
DATALOADER:
FILTER_EMPTY_ANNOTATIONS: True
NUM_WORKERS: 16
SOLVER:
BASE_LR: 0.02
WEIGHT_DECAY: 1e-4
LR_SCHEDULER_NAME: "WarmupPolyLR"
POLY_LR_POWER: 0.9
WARMUP_ITERS: 1000
WARMUP_FACTOR: 0.001
WARMUP_METHOD: "linear"
CLIP_GRADIENTS:
ENABLED: True
CLIP_VALUE: 15.0
IMS_PER_BATCH: 32
MAX_ITER: 65000
CHECKPOINT_PERIOD: 20000
INPUT:
MIN_SIZE_TRAIN: (512, 768, 1024, 1152, 1216, 1344, 1408, 1536, 1664, 1728, 1856, 1920, 2048)
MIN_SIZE_TRAIN_SAMPLING: "choice"
MIN_SIZE_TEST: 1024
MAX_SIZE_TRAIN: 4096
MAX_SIZE_TEST: 2048
CROP:
MINIMUM_INST_AREA: 1
ENABLED: True
TYPE: "absolute"
SIZE: (512, 1024)
MASK_FORMAT: "bitmask"
VERSION: 2